SRI INTERNATIONAL MENLO PARK CA F/6 9/2
ON=LINE PROGRAMMER'S MANAGEMENT SYSTEM. (U)
AUG 79 B L PARSLEY:» H 6 LEHTMAN» S KAHN F30602-?T-C-0185

UNCLASSIFIED RADC=TR=79-205

END

|~ ap-ao7s wes

1.0 & B2 iz
fl= e

‘ [1%
I - iz
= M
2 Jlis pre

MICROCOPY RESOLUTION TEST CHART

RADC-TR-79-205
Final Technical Report
August 1979

ON-LINE PROGRAMMER’S
MANAGEMENT SYSTEM

Augmentation Resources Center

Bruce L. Parsley
Harvey G. Lehtman

Susan Kahn
v 0]
O
<H
<H »
o APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
&
< .
= Dbegc 1
. F’ Lol "'j
‘ DA A B “
A o

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344l

| D0 FILE COPY.

 This report has been revieved by the RADC Information Office (OI)
~and {s releasable to the National Technical Information Service (NTIS).
. At NTIS it will be releasable to the general public, including foreign ‘;

nations.,

RADC-TR-79-205 has been reviewed and is approved for publication.

 APPROVED: %w"/ 2 dﬁ%"’

RAYMOND A. LIUZZI
Project Engineer

APPROVED: Wfépwwm)

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: Wn/f %4,

' JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
‘ " mailing 1list, or if the addressee is no longer employed by your organiza-
' tion, please notify RADC (ISIE), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list. ‘

Do not return this copy. Retain or destroy.

s s S

i i e OB S A NS T S - e S LS - AR v MRSt St e 2l SR e RO] oy

I TP PN AT W Y TR ST (TR M

”

Add — o

UNCLASSIFIED
GFICATOON OF THIS PAGE (When Dats Entered)
: : READ INSTRUCTIONS
3 s EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
? . 2. GOVY ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
4
' ON-LINE PROGRAMMER'S JANAGEMENT SYSTEM @ Final Technical Repert .
1 > £ X L Sep 77===Mar 79,
3 camamn e s o 6. PERFORMING MBER
i = ___|N/A
; f /0 Bruce L./P rsley » /5 F;ﬂ6ﬁ2-77-€-—/0185
3 Harvey G./Lehtman ;
3 i Susa hn
E . RFORM N NAME AND ADDRESS ety 10. PROGRAM ELEMENT, PROJECT, TASK
; Augmentation Resources Center - 7 4 AP A & WOR]
" 20705 Valley Green Drive Q’Z 558}’1303 C/_ZX “
; g Cupertino CA 95014 1
11. CONTROLLING OFFICE NAME AND ADDRESS .
: Rome Air Development Center (ISIE) // Augast 979 1
] Griffiss AFB NY 13441 o AGES 1
: 4. sma::elTORlNG AGENCY NAME & Alb‘i)lffsffidl":'mr lrom Controlling Office) l}%ciEACsUSRiTFVIEbASS (of this report)
B 71 15a. DECL ASSIFICATION/DOWNGRADING r
: ' SCHEDULE
ki : N/A
g 16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) H
Same
i 8. SUPPLEMENTARY NOTES
:Q g RADC Project Engineer: Raymond A. Liuzzi (ISIE)
3 7 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
1 Debugging System Software
1 On-Line JOVIAL
i Sof tware Engineering Compilers
4 i Programming Environments 3
i Computers E
é A 20\JABSTRACT (Continue on reverse side If necessary and identify by block number)
4 ih:ls report is composed of studies that have been conducted to develop the NLS
| . system as an on-line programming environment and to provide an on~line JOVIAL
1 4 interactive debugger with the capabilities to debug JOVIAL language programs.
The final report contains several design additions to the NLS system to create

an on-line programming environment. A JOVIAL User's Guide prepared in

Ll 2 N

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) 74

Addendum Technical Report I provides an extensive set of commands for using |
g the JDAD Debugger. Addendum Technical Report II provides a generalized i
i i approach to debugging and describes the NLS/NSW Do-All Debugger (DAD). i
|
{ DD 52N 1473 UNCLASSIFIED
1
3
!

R i AP SR S s v S A M o 5

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

IS F TS

;i
'?
|
]
i
%

oL B SN 31 7 B S i i3t

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

R Vol el A A G T S v =Sl HS R R IR i s VI TR

A T

e 2 N AR 0 T 75 T PSRN) TSR e

EVALUATION

The work described in the final technical report and the addendum

reports, one and two, representsa significant accomplishment in
establishing parts of the framework of an on-line software programming

environment.

sy SRR

The NLS system represents a significant programming tool that can

be utilized to develop software programs. The high cost of developing

A

software has been established in numerous studies. One way of reducing
this cost is to develop standard programming environments. Parts of

?i : these programming environments will require sophisticated on-line

; debuggers. This effort establishes the feasibility of one such debugger

for JOVIAL language programs{

The additions to NLS described in this effort also provide the

types of capabilities that must be present in a standard software

programming environment.

IR e v s

perees

The result of this effort has been to extend the capability of

tools needed in a software programming environment and establish

procedures and methods for their implementation. | Aecession For

a47 NTIS GiAkl

: : / ,:é! ”C DDC TAB

;é;;iié? ,}aozcﬁ Unannounced
RA Ju ie: on

A. LIUZZI
Project Engineer

By
Distritution/

Avcilability Codes l /
Availand/or
i t. special

i e D s s P e HAES L 0 N 6 S St GNP TR

i

e SRR o B S e A e o i e I

o TR TR 2 P P TIN5 A] DR R TSRO

]
i
|
]
; ELP KGL 1-May=-T7G 16:01 472:8
; Introduction
4 Un-Line Programmers Monagement System:
i Final lechnical keport
i hugmentation hesources Center, Tymshare, lncorporated 1
Introduction c
4 2
. This repcrt is submitted in fullfillment of Task/Technical he-
3 quirement 4.1.1 of the Cn-Line Programmers Managemert System
project (RALC - Skl Contract Number F3060z-77-C-G165; Skl -
Tymshare Subcontract Number 143G64). The Statement of work said
! in part: ca
% TASKS AND TECHN1CAL REQUIKEMENIS cal
: ¥
‘ : 4.1.1 Develop a list of additions and modifications to
H the NLS family of tools to create an on-line programming
i environment based on the 1BM evaluation of NLS's program-
; ming environment, the 1BM Structured Frogramming Series,
and the contractors own suggestions. cala
i 4.1.2 Upon receipt of written approval from the con-
¢ tracting officer, or of his authorized representative,
1 H implement the approved suggestons frcm the list. 2alb
i
3 ? 4.1.3 Demonstrate a Jovial linteractive debug.cr
i utilizing: calc
4.1.5.1 Language module (LM) and operating system module
y 1 (CS) for FLP-10 cald | &
2 ; 4.1.3.2 Jovial compiler on PDP-10 2ale i
b ! 4.1.3.2 ARPA Metwork zalf ,
3 4.1.35.4 NLS/NSwW Do-All Debugger (DAL) 2alg 1
f REPCRTING REQUIREMENTS cac i
i ; -- An interim techniczl report describing the results of i
j the software engineering tools study, including an or- ;
| dered list of recommended additions to NLS. 2ala | 3
A i 9
E -=- A final technical report. 2a2b f
§ This is the report mentioned immediately above. cb]
4
i
Cn-Line Programmers Management System:
tinal Technical Report

1

e 0 T

BLP HGL 1~May-79 16:01 147238
Summary

TR EP—

Summary 3

As required by the Statement of Work, we have created a version
cf the ARC Do-All Debugger (DAD) for use with programs written
g in Jovial and which are compiled on the DEC PDP-10 running

.r under the TENEX operating system. Attached is a user guide to

this new Jovial LAD (JDAD). 3a

In the lnterim Technical Report for this project submitted on
17 January 197$ as ARC Journal document (46236,), we presented
an ordered list of additions and modifications to NLS program-
ming tools. Since then we have worked on and completed the

following of those recommendations: 3b
1. Enable NLSE to start DAD and JDAD. 5b1
¢. Encapsulate the JOVIAL compiler. 3b2
3. Document the encapsulation facility. 3b3
4. Generalize the PROGRKAMS subsystem and its templates. 5bl

Additionally, we have created a detailed design for the follow-

ing task: 3c
5. An interactive, conditional, iterative Process system. sei

The first four of the tasks have resulted in systems and tools

which were demonstrated, along with the JDAD debugger, to the
technical monitor of the project at ARKC in Cupertino during the

week of 25 April 1¢979. These tasks are discussed in the fol-

lowing sections of this report. The last section of this re-

port is a glossary of terms that may be unfamiliar to readers.

1t is recommended that any reader unfamiliar with NLS or TENEX
terminology read the glossary before reading the following sec-
tions. 3d

R O SR SN o G o

Cn-Line Programmers Management System:
Final Technical Report
2

BELP HGL 1-May-7¢ 16:01 47238
Tasks Completed
Task 1: OSpliceable DAD

Detailed Discussion of Tasks Completed y
Task 1: LEnable NLS to start DAL and JDAD: A "Spliceable" DAD. Le
lntroducticn 4a1

A facility was added permitting the LADL and JDALD

debuggers tc "splice" themselves into the fork structure

for an already executing program. Before this feature

was available, DAD or JLAD (which, for simplicity, will

be called [J]DAD in the following) had to be started at

the Exec level; from the debugger, it was then necessary

to start the programs to be debugged. bata

Under the new facility, a user would cause an executing

program toc be interrupted, e.g., via control-C, and issue

a special command to the Exec. The command would result

in [JIDAD being spliced into the proper place in the :
interrupted program's fork structure. ba1b

As an example of the benefits of such a facility, con-

sider a non-programmer doing normal work in some program.

An unexpected bug may be encountered. That user may then

call in a programmer who could access [J]DAL to investi-

gate the bug with most of the bug's context intact. Lale

Tasks Performed to Create a Spliceable LAD or JLDAD ka2

The TENEX Exec was modified to create a new [J]DAD com-

mand which would splice in an instance of the [JJLAD pro-

gram between the EXEC fork and its subsidiary forks

(which presumably a2re running 2 program which one or more
processes/forks.) After splicing in [J]DAD, execution

would begin at 2 new entry point which would cause the

new [J]DAD code described below to be executed. Jacza

The [J]DAD LDispatch Module (which performs bookkeeping
operations on tte internal [J)DAD data structures con-

cerned with the processes being debugged) and the [J]DAD
Operating System Module (which interfaces [JJDAD to spe-

cific operating systems, in the current case TENEX and

TOPS-20) were mcdified so [JIDAL could begin execution at

an alternate entry point. 1If started at this entry

point, [J]DAD would query the operating system for infor-
mation concerning processes in the fork structure

underneath it and the particular states of those forks. kazb

[JIDAD then establishes states of the forks and their

Cn-Line Programmers Management System:
Final Technical keport
3

BB i s

e R o

Lo e el S e A e g ST e TSI Ty D ST

BLP hHGL 1-May-79 16:01
Tasks Completed
Task 1: Spliceable DAD

programs in its internal data structures comparable to
the states which would exist if the program were ini-
tially executed under [J]DAD and the programmer had typed
the control-L interrupt character to enter the debugger.

After its intial polling of fork status information and
state determination and establishment, [J]DAD may be con-
tinued in its usual fashion to set breakpoints, examine
and change code, and in general perform its usual
debugging tasks.

On-Line Programmers Management System:
Final Technical Report
y

47238

RO B S g s v B, R P R i s e A it A e S A S v s

o

AT N TV D P e e DU St gy gy i b

ELP hGL 1-May-7¢ 16:01 47258
Tasks Completed
Task ¢: Encapsulating the JCViIAL Compiler

Task 2: Encapsulate the JCVIAL ccmpiler. Lp

Unce the JOV1IAL compiler is encapsulated, JOV1AL source code
programs that are in NLS files may be directly compiled with

a variation of the PKCGRAMS subsystem's Compile File com-

mand, without the user directly having to go through inter-

1 mediate steps involving a sequential file (a2s is presently

{ the case). Also, the encapsulation of the JUVIAL compiler

will allow the use of the L1IERARY subsystem for semi-

automatic JCVIAL ccmpilaetions. 4b1

Under the stategy implemented, scurce code for JOVIAL prc-
grams is composed and edited in AUGMENT. 1The "Compile
JOVIAL" command is then invoked creating a temporary sequen-
tial file (invisible to the user). The encapsulated JGV1AL
compiler is executed, using this sequential file as input,
and also using switches which may be set as options tc the
ccmmand. Cbject code is compiled to the specified location;
error messages and diagnostics are entered into the desired

locations. 4p2
The following is the syntax for the command (extracted from
the Command Meta Language gramma2r of the demonstration sys-
tem): Lbjs
"COMPILE" Lb3a !
<"jovial program in file"> 4p3al
LSEL(#"CLDFILENAME") % the specification of the AUG- {
MENT JOVIAL source code file & 4bsac { 3
<"to"> kvsas :
LSEL(#"TEX1") % specification c¢f the rname of the ob-
ject code file & Lb3al
[GP11CN <"enter switches"> kp3as
£ getswitches % any number of switches as outlined
i below may be specified %] Lb3as5a
g [OCP110ON <"compcol filename"> LSEL(#"TEXI")] 4b3ab
: CUNF IkM kb3at
1 ? The following are valid switches: Ub3b
| i
i g ("CRCSSREF"/ "ACRKCSS"/ "SYNTAX"/ "INDENT"/ “KBC"/
5 3 "STAT1ISTICS"/ "MACROCCODE"/ "LCOWSEG"/ "hH1SEG"/
| ; "NCNEST"/ "1SL"/ “NCPTI"/ "L1STCCPY"/ "NCSUURKCE"“/
-; H "DEF1INE"/ "NOTHKHACLEL"/ "NCINFOKM"/ "NOWARNING"/ "MI1S-
g S1ION"/ "NCEBACK"/ "KIGHSTA1"/ "KA10"/ "KI10"/ "“MAGIC"/ ;
| "ASSEM") 4b3b1 :
Cn-Line Programmers hanagement System:

¥ : Final Technical keport é
5

o

]

ELP HGL 1-May-79 16:01
Tasks Completed
Task 3: Bncapsulation Facility Documentation

Task 3: Document the encapsulation facility.

Introduction

Encapsulation is a technique used to enable a process to
control the execution environment of other processes.

The controlling prccess does this by declaring that it
wishes to trap selected system calls (JSYS's) when exe-
cuted by other processes. Wwhen a monitored process
attempts to execute a system call that will be trapped it
is suspended and the monitoring process is notified.
After gaining control the monitoring process may take any
action it deems neccessary. It may handle the call it-
self or it may allow the monitored process to perform the
call or it may modify the arguments to the system call
before it is handled.

1his discussion here concerns taking a process which cur-
rently runs under TENEX or TOPS-2C and encapsulating it
under AUGMEKRT. The purpose of encapsulation in this set-
ting is to allow a user to run a process not currently
provided directly in the AUGMENT environment, perhaps
using AUGMENT files as input to the process and providing
entry via AUGMENT-style commands.

Description of Encapsulation Technigue

l1here are three things that need to be done in AUGMENT in
order to encapsulate a process designed to run under
TENEX, or T0PS=-20:

1. A correspondence table specifying each JSYIS to be
trapped and the address of the procedure which will
handle the trapped JSYS must be included as a global
declaration. The table below specifies that the
three JSYS's BOUT, GIJFN, and PBCUT will be trapped by
NLS and they will be handled by procedures named
BCUTHNDLEK, GTJFNENDLER, and PBGUTHNDLER respectively.
The table must end with -1, =-1).

EXAMPLE:

% jsys handling correspondence table %

47238

4e

e

beta

4e1b

ye2

4ecza

Yec2a

4e2a2

Yezaza

DECLARE bec2a2al
Jtraps = (4c2azac
§pbout, §pbouthndler, Uc2azaza
¢bout, ¢bouthndler, Yczazazd
$gtifn, ¢gtjfnhndler, kc2aza2ce

Cn-Line Programmers Management System:
Final Technical Report
6

A RS e s MR S b B) 2 NS AR s v »‘Wk e z e i TS Wi e R ——

-

{
|

e

e

BLP hGL 1-May-79 16:01 47238 ;
| Tasks Completed]
- Task 3: Encapsulation Facility Documentation

=i e E 4czazazcd

2. HWrite code to start up the specified process in an
inferior fork. Le2a3
The steps to do this are: 4e2asa

a.) First create the fork and load the process

that is to run in the fork. This is done by

first calling the backend procedure CKFORK with

no arguments. CHRFCKK will return a fork handle

number which must be saved for later procedure

calls. The process is then loaded into the new

fork's address space by a call cn GTFKF1LE. The

_ arguments for GIFKFILE will be the fork handle

;| number and the JFN of the save file to be

; loaded. bezasan

e i e i e e S el TR

b.) Define whichk JSYS's are to be trapped and

3 what procedure is tc handle the jsys when the

- interrupt occurs. T1his is done by calling the

; backend procedure DEFINETRAPS with the address

of the jsys correspondence tabie as its argu-

ment. which mcdifies two NLS tables: BITTAELE
indicates which JSYS's are to be trapped by set-

ting the appropriate bit and DTABLE indicates

the address of the procedure to be called when a
particular jsys is trapped. 4eczasac

c.) Call the backend procedure SETTKAPS with

the fork handle of the prccess being

encapsulated, a channel number over which

interrupts will be transmitted to the controling

fork, and the desired interrupt level as argu-

ments. 4ccaszas

d.) Save the terminal characteristics in case

the encapsulated proccess changes them by calling

the backend procedure SAVETRM. This procedure

will return three results which must be saved

for a later procedure call. The results are:

the terminal mode word, terminal output contrcl

word one and terminal output ccntrcl word two. 4c2ajal

e.) Wait for the infericr fork to finish by
calling the backend procedure WAITFKK with the
fork handle as its argument. beczaszaS

B e,

e

Un-Line Prcgrammers Management System:
Final lechnical Report
7

.

deb . Con it o e s S

R

i et

i Rt S T e e (s b B AR s U £ ia i o S

Sl R e e R Y 8
—— SIRSRSEEE

AT S AN A o AR TS

BLP HGL 1-May-79 16:01 47238
Tasks Completed
Task 3: Encapsulation Facility Documentation

f.) Call the backend procedure CLEANUP. This
procedure will deactivate the channel connec-
tion, zero out BITTABLE and DTABLE, kill the

inferior fork, and release the JFN of the sav
file.

4eZa3zab
g.) Restore the terminal characteristics by

calling the backend procedure RSTRTRM whose ar-
guments will be the values returned by SAVTRM. M4c2a3af

The procedure below is a typical example of how a
process is encapsulated. All procedures mentioned
can be found in the Encapsulator Module <nlsbesrc,

encapsulator,>. 4ec2a3b

EXAMPLE: 4ec2a3e
(runit) % run an encapsulated process %

PROCECURE(savjfn) ; he2a3en

% Procedure description bcz2a3c1a

FUNCTION 4c2a3ctat

This procedure is responsible for
starting up and running the
encapsulated process as well as clean-
ing things up when the process has ter-
minated. Note that three globals are
required: bc2a3clata
chan - is the channel used in
issueing the interrupt usually a
number in the high twenties or low

thirties. 4e2a3ct1alal
ilev - interrupt it will usually be
3. 4c2a3c1alae
frkhandle - handle used to identify
the encapsulated fork. 4e2a3clalasl
ARGUMENTS 4e2a3ct1a2
savjfn - jfn of sav file to be run in
the new fork 4c2aiclaca
KESULTS 4e2a3c1as
none Uc2a3clasa
NON-STANDARD CONTROL 4ec2a3clal
none 4c2a3clala
% 4cza3c1ab
% Declarations % 4c2a3ec1b
(trmmcde); 4c2a3c1bil
(ctlwd1); 4ec2a3cib2
(ctlwd2); 4ec2a3c1b3

On-Line Programmers Management System:
Final Technical Report
8

S e]

we e

“» ” P
e e o A S i i, S RS - 5 k) i b gl i

BLP hGL 1-hMay-7S 16:01 U4T72:¢
Tasks Completed
Task 3: Encapsulaticn Facility Documentation

% define <channel and interrupt level for

jsys trapping in fork to be created %
chan _ 34;
ilev _ 33

% guard against errors %
INVCKE(catch);

Lezas3cle
4ecza3elel
4cza3iclee

4ec2a3c1d
4eza3e1dl

% create new fork and enable all capabilities

¥

frkhandle crfork();

4e2a3cie
4eza3cle

% get and load the .sav file to run in the

new fork §
gtfkfile(frkhandle, savjfn);

Yezajszelf
Yeczaszecif1

§ define jsys's to be trapped and set the

traps fcr the new fork %
definetraps($jtraps);
settraps(frkhandle, chan, ilev);
save terminal characteristics %
trmmcde _ savtrm(:ctlwdil, ctlwd2);
wait until it finishes %
waitfrk(frkhandle);
cleanup %
cleanup(frkhandle, savjfn, chan);
drop the catchphrase®
DRGP(catch);
Return %
RETURN;
% catchphrase definiticn %
(catch) CATCHPHKASE();
BEGIN
CASE SIGNALTYPE OF
= aborttype :
BEGIN
D1SABLE (catch);
cleanup(frkhandle, savjfn,

W W W W R

END;
ENDCASE;
CUNTINUE;
END;
END.

be2a3cig
4c2a3cigt
bczascige
4ec2azec1h
4c2a3ctih1
bezaseli
4e2a3e1i
bezaselj
4c2aze1j1
Lkecza3eclk
4c2a3ctk1
be2a3e1l
4e2asc1ln
Yc2asecim
Ycaszc1m1
be2a3eimla
becza3scimld
beczaseimibi
Lecza3cimlibila
4ec2a3c1mibib
chan);
4e2ascimibie
Yec2asc1mibid
4c2ascimibe
beczasecimie
becza3e1mid
4c2as3cin

There are several examples of processes which ter-
minate only with a <"C> which would return ccntrol

to the operating system rather than AUGMENT.

Une

way to handle this is to have a handler detect when
the desired processing has completed. The handler

will then set a global flag and leave the

encapsulated process frozen until such time that

On-Line Programmers Management System:
Final Technical keport
S

g o S e

kil R G R AR KR PN A Ly P B 5 Sl il M

BELP HGL 1-May-79 16:01 47238
Tasks Completed
Task 3: Encapsulation Facility Documentation 2

the mcnitoring process sees the flag. 1Instead of

3 waiting until the inferior fork finishes the moni-

3 toring procedure will have to look at the flag from

time to time. When the flag is seen the monitoring j
3 routine can then kill the fork without creating any 3
B problems. lhc2a3d E
3. Write the procedures that will handle the trapped

jsys's. 4ec2al

The programmer will have to know something (per-
haps, a great deal) about the process he wishes to
encapsulate in order to write the handlers. Input
and output are the primary concerns here. If the
process expects a command from the terminal the
handler may feed that command to the process.
Also, an AUGMENT file may be handed to the process
rather than a sequential file. The handler must
know what the encapsulated process is requesting
and how to satisfy that request. The handlers may
have to keep track of many different states in
order to do this successfully. 4e2ala

JSYS handlers are passed four arguments: 4ec2alb
A fork handle 4c2aliv1
The current JSYS number 4calibz |

The address where the encapsulator saves the
current fork PC 4c2alibs

The address of a 16 word block containing the
content of the fork's registers 4e2albl

JSYS handlers return two boolean values: 4ec2alic
handled Yecale1

TRUE if JSYS has been handled 4e2alicla

-

FALSE 1let TENEX handle it Yec2alicid
il unfreeze Ye2alec2

TKRUE to unfreeze the fork Yec2alic2a

FALSE to leave it frozen % 4ec2alcehd

Un-Line Programmers Management System:
Final Technical keport
10

8
3
|
|
!
|
;

T]

{
B
|
3

BLP HGL 1-May-7% 16:01 U47z3¢&
Tasks Completed
Task 5: Encapsulatiorn Facility Documentation

Encapsulator Module bes

The Encapsulator Mcdule is a collecticn cf AUGMENT rou-
tines located in <nlsbesrc,encapsulator,> and are used to
handle the lcw level coding necessary to perform an

encapsulation. Lcsa

lt has three types of routines. <Cne group of routines

deals with starting up the encapsulation and cleaning up

when it is finished: 4esb
a.) Create the new fork. Lesbt
b.) Define and set the traps. 4eib2

c.) Reset global tables when encapsulation is fin-
ished.. Le3bs

d.) Save and reset terminal characteristics. 4e3bk
Another group of rcutines are invoked by the interrupt
mechanism. when an interrupt occurs LUMMYJSYSTKAFPSI is
invocked and calls other rcutines in the Encapsulator
Module to accomplish the following: Lejse

a.) Save the state of the superior fork. Lesen

b.) Dispatch the interrupt to the appropriate

handler. 4esece
¢c.) Fkestore the state of the superior fork. Lec3es
d.) Let the inferior fork continue. Lescl

€.) Continue the superior fork in the state existing
when the interrrupt occurred. 4ec3es

The remaininrg routines are designed tc support writing in
the inferior fork's accumulators and address space. 4esd

Encapsulator Subsystem Lel

The encapsulator subsystem is designed to assist the
programmer faced with an encapsulation project as well as
serving as a tool in discovering the nature of any prc-
cess. 1t allows the user to run the prccess as if it

were running uder the operating system while tracing all
JSY3 calls. bcla

OCn-Line Programmers Management System:
Final Technical heport
1"

o i s S e b B Ly

v o s v)

D —

e S R S NN M P ¢ e s e

BLP EGL 1-May-79 16:01

Tasks Completed-

Task 3: Encapsulation Facility Documentation

The subsystem has a single command which asks the user to
specify an executable program file (e.g., a TENEX SAV
file) that is to be encapsulated, what information is
desired (a trace of all JSYS calls, a frequency count, or
both) and how that information is to be presented (dis-
played at the terminal or recorded in a file). The in-
formation obtained consists cof the identificaticn of the
JSYS trapped and its arguments. Actually, the contents
of the first four registers are obtained regardless of
the number of arguments expected for the jsys.

After the command is entered the specified process is
encapsulated trapping each JSYS, obtaining the desired
information about the JSYS and letting the operating sys-
tem handle the call. Thus, the process will run as it
would if it was running directly under the operating sys-
tem.

Currently, only JSYIS's whose numbers are in the ranges 1
to 12E, 14B to 315E, and 317B to 337b are trapped. The
TIME, GJINF, and JOBIM JSYS's are not included because
TENEX does not execute them properly after they have been
trapped. These JSYS's should never be trapped in any
encapsulation. There may be others that cause problems
and it would be useful if they are reported when
encountered.

1f one is working in display mode and requests a trace,
the information about each JSYS trapped will be displayed
in the command feedback window and requires an UK before
the process is continued. 1his allows the user to
contemplate the flow of the process but can be very
anoying if a single JSYS is executing inside a loop a
large number of times. 1n typewriter mode no UK is re-
quired and the information will come out as fast as it is
encountered.

The frequency distribution table will not be displayed or
recorded until the process terminates. 1lhus, one will
not be able to get a frequency distribution of a process
that is normally terminated by a <"C> since you will be
returned to the operating system rather than the
encapsulator subsystem.

Cn-Line Prcgrammers Management System:
Final Technical hkeport
12

47238

4elb

Yeclc

beldd

4ele

heluf

e e w o BRI L ik ol e e il o A A

BLP HEGL 1-May-79 16:01 47238

Tasks Completed
Task 4: PROGRAMS System Generalization

Task 4: Generalize the PRCGRAMS subsystem and its templates. 4a

The AUGMENT PROGKAMS subsystem provides access to tools

which aid in the program development process by permitting
compilation and testing of programs and by permitting inser-

tion of language dependent program entity templates. 4d1

The PRCGRAMS subsystem is currently tailored for the L10 and
CML languages. Wwe would like to make its features available
fcr other computer languages, e.g., JOV1IAL. The main idea
was to develop a2 framework and/cr methodology for making the
facilities of the PRCGRAMS subsystem easily extensible to
new computer languages. In the demonstration project, the
commands and templates associated with the PRCGRAMS system
were expanded to deal with the JOVIAL, META (the ARC meta-

: compiler), and CML languages as well as L10. Structures

E relevant to these different languages were created as

‘ templates and entered as options into the PRCGhAMS ccmmands. Ldz

Appendix 1 cutlines the ccmmand syntax for the new programs
subsystem. Appendix Z presents the current language
dependent programming templates inserted via commands in the
new PROGRAMS system as extracted from < SSSRC, PROGRAMS-
TEMPLATES, >. 4

.
w)
e

1
|
!
!

On-Line Programmers Management System:
Final Technical Report
13

Qs it e S R s # S S S i i el b i o b g s i i e

?
BLP HGL 1-May-79 16:01 47238
Tasks Completed
Task 5: Process System Design
E
] Task 5: An interactive, conditional, iterative Process system. e
f' NLS currently has a "Process commands" facility, but it is
2

rather limited. Process commands are currently limited to

- be the equivalent of NLS commands -- it's roughly equivalent

to what a user could type as input, e.g., there are cur-

3 rently no facilities for iteration, or for conditionally

3 performing cne set of commands rather than another set, or

for interacting with the user in the midst of the execution

of the Process commands. be1

The general idea would be to provide a "Process Language"

: that had all, or almost all, of the features of a computer

% language such as ALGOL, e.g., conditional statements,

‘ iterative statements, block structure, subroutines, constant

: and variable data declarations. 1In addition the language

1 would have provisions for interactions with the user. Calls

on L10 procedures probably would also be possible. 4e2

Process Language "programs" probably would be interpreted
rather than compiled, probably in a manner similar to the
present Process commands facility. be3

Some initial design thoughts on such a facility may be found

in <26046,>. 1t was produced for the NSW project and ap-

pears as Appendix 3 to this report. 1t is applicable to the
AUGMENT command language. Using this as a guide, we have

created a design for the syntax for a complete Process

Language. 1This syntax appears as Appendix A. el

o

e T ey

e < 54

4 Cn-Line Programmers Management System:
’ b Final Technical Report

14

sk

iy Ay S » T YT

SR

s i TR T

BLP HGL 1-May-79 16:01 47238
Appendix 1: PKOGRAMS Subsystem Syntax

Pt &

Appendix 1: Command Syntax for the New AUGMENT PROGKAMS Subsystem %

1his appendix outlines the command syntax for the new PROGRAMS
subsystem. The syntax is presented in a modified Command Meta

- e

; Language description. S5a
3 g Notes: 521
? "lz" stands for "!21" ' 5ala
A final CONKF1RM is left implicit for all commands. 5ailb
’ 5 Curly-brackets are used to indicate a CML LCOP sort of

ﬁ : thing; exit from the loop is made via an CK. Sale
Rules used elsewhere: S5acz
anyinput = anytext LSEL / fstructure <"™at"> DSEL 5a2a

anytext = Character / Invisible / lext / Visible /
Word / Statement Sa2ail

fstructure = : Sacac

[OPT10N <"Filtered: "> VWSPECS] (Eranch / Group /

T

Plex / Rest / File) S5azaca
userprog = Content-Analyzer / Sort-Key / Sequence-
Generator!2 Sacb
; compileunit = 5azgc
| ;
2 i userprog / Kun-Program / S5agel 3
N | Subsystem / Sazc2
4 3 Grammar / Parse-Fe (Code/Lata) / backend / Support-
f Module!2 / 5a2c2a]
] L10-Program / L1011-Program!2 / Cml-Program / Meta-
| Program / Jovial-Program / S5aces
| Procedure / Coroutinelz / Parse-Fe Function /
f Catchphrase!2 Sa2cl
\ 3
{ Insert % for L10 mode % 5a3 :
(Program 5a3a
g . / compileunit 5a3b
| ; / 1f-Then-Else / Case!?2 S5a3c
' / For / Loop!2 / Dc-Until / PDo-While!2 / Until-Do /
while=Do 5asd
) S5aje
<"to follow"> DSEL [LEVADJ] Sa3el

On-Line.Programmers Management System:
Final Technical heport
15

i

BLP HGL 1-May-79 16:01

47238

Appendix 1: PROGRAMS Subsyst<m Syntax

Insert % for CML mode %
Prcgram <"to follow"> DSEL [LEVADJ]

lnsert $ for Meta mode %
Program <"to follow"> DSEL [LEVADJ]

Insert § for Jovial mode %

Program

Compool!2 Directive / Compool!2 Source / Procedure
If-Else / Switch

For By-while / For Then-While / While

Call / Procedure!2 Call Declaration

~N NN\~

<"to follow"> DSEL [LEVADJ]
Insert Comment <"to follow"> DSEL % for any mode %

Compile
(Content-Analyzer <"in"> (anyinput / Program <"AT">
DSEL)
/ Program <"AT"> DSEL <"using"> LSEL <"to"> LGSEL
/ compileunit <"at"> DSEL
)
{ Record <"errors"> <"at"> DSEL
/ Load <"after compilation">
/ Filtered VWSPECS
}

Load (Content-Analyzer / Program!2 / compileunit)
<{"named"> LSEL

Deinstitute userprog
Institute!2 wuserprog <"named"> LSEL

Run
(Run-Program <"named"> LSEL
/ Process <"named"> LSEL
<{"input from">
(anyinput
/ lnteractive <"with termination character"> LSEL
/ Sequential-File <"named"> LSEL
/ No-lnput
)
<"cutput to">
{ Nls-File <"at"> LSEL
/ Terminal
/ Sequential-File <"named"> LSEL
/ kegisters ...

Cn-Line Programmers Management System:
Final Technical keport
16

Sal
Sala

5a5
5a5a

5ab
5aba
5abb
Sabe
5abd
Sabe
5abf
5a6f1

5af7
5a8

5a8a
5a8b
5a8c
5a8d
5abd1
5abd2
5a8d3
Sa8dy

5a9
5a10
cal1

5a12
S5al2a
5al2b
Sai2b1
5al2bla
5ai2b1db
5at2ble
S5alzbid
5al2bile
S5alzb2
5alegbza
5al2b2b
5al2b2e
Salebad

e T

N A B R i B s i N O s TSRS S i Gl

ST TR

et €7 DD N

e

N

B i

S it e e AR SO NN R R

BLP hGL 1-May-79% 16:01 47238
Appendix 1: PROGRAMS Subsystem Syntax

} Sa12b2e

<"wait for completion and then Kill?") 5a12b3

(Yes / No <"notify at completion?"> (Yes/No)) 5a12bsa

<"go?"> Salzbl

) 5al2e

Kill Process <"named"> LSEL 5ai13
wait {"for completion and then Kill"> Process

<"named"> LSEL Sa214

Sheow (Buffer / lnsert-Mode / Process <"named"> LSEL) 5a15

Set 5a16

(Buffer-Size <"to"> LSEL Salba

/ insert-Mode <"to"> (Cml / Jovial / L10 / Meta) 5a16b

) 5216¢

Reset (Buffer-Size / Insert-Mode) £alf7

Delete!?2 (A1l / Last) 5a18

Invoke!Z (Dad / Ddt!z) ' 5a19

On-Line Programmers Management System:
Final Technical hkeport
17

o P ——

e

s D e i e ¢ L

I e

o R T bl 690, T N S A LAY ¢ e s

. R A e .

BLP HGL 1-May-79 16:01 47238
Appendix 2: PRGCGRAMS Subsystem Templates
Appendix 2: Language Dependent Programming Templates 6
The following are the current programming templates inserted
via commands in the new PROGRAMS system as extracted from <
SSSRC, PROGRAMS-TEMPLATES, »>: 6a
(eml) 6a1
(grammar) 6ala
$GR% FILE SubSyshame % GRammar % 6alail
% CUMPILE-1LNSTRUCTICNS $% 6alala
INCLUDE <SsSrc¢, NLS-Grammar, flags !subsystems>
6atlalail
4 DECLARATIGONS % 6alalb
INCLUDE <SsSrc, NLS-Grammar, declarations
tuniversal> 6alaib1
DECLARE COMMAND WORD 6alaib2
4subsystem command words (should be 100 to
127)% 6alaib2a
"COMMANDI" = 100, 6alaib2b
"COMMANDNn" = 10n-1; 6atlaib2c
6atlailb2d
DECLARE FEFUNCTION 6alalib3
fefunci, 6alaib3a
fefuncn; 6a1a1b3b
DECLARE FUNCTICN 6alalbl
PROCESS = "PROCESSX" , PACKAGE = "PCKX"™ : 6alailblda
xroutinel, 6alalbldal
xroutinen; 6alalblaz
DECLARE GLOBAL 6alai1bb
global1l, 4 short description of globall %
6alalbSa
globaln; 4 short description of globaln %
6a1a1b5b
DECLARE VAKIAELE 6ala1bb
variablel, 6alalibba
variablen; 6ala1bbb
% 6alaibbe
% COMMON-RULES § 6alalc
INCLUDE <SsSrc, NLS-Grammar, rules !luniversal> 6alailct
6alalcla
rulel = <rule-body>; 6alalc?
6alalc2a
rulen = <rule=-body>; 6alaic3
6alailc3a
%% 6alalc3b
% COMMANDS % SUBSYSTEM SubSysName KEYWORD
"SUBSYSNAME" 6atlaild
INITIALIZATION % for SubSysName % 6atlatd1

‘On-Line Programmers Management System:
Final lechnical Report
18

g

.
g

D e -

il St

SRR

e e e oL,

3 BLP HGL 1-May-79 16:01 47238
§ Appendix 2: PKROGRAMS Subsystem Templates
é initsubsys = xinitsubsys();
k 6alaldila
{ TERMINATION % for SubSysName % 6alalde
£ trmsubsys = xtrmsubsys();
i 6atlald2a
¢ command1 COMMAND = "COMMANDWOKD1" 6atlailds
; <rule-body> 6alaildsa
; xroutineil(variablel, variable?2);
; 6alai1d3b
command2 COMMAND = "COMMANDWORL2" 6alaildd
<rule-body> balaldla
xroutineZ2(variablel, variablecz);
‘ 6alaldib
: INCLUDE <SsSrc, NLS-Grammar, commands
: funiversal> 6alai1ds
END. 6ala1dé6
FINISH balaile
(program) 6a1b
$GKY% FILE SubSysName % GRammar % 6albi
% COMPILE-INSTKUCTIONS §% 6aib1la
INCLUCE <SsSrc, NLS-Grammar, flags !subsystems>
6alblai
% DECLARATICNS § 6a1lb1b
INCLUDE <SsSrc, NLS-Grammar, declarations
funiversal> 6albib1
DECLARE COGMMAND WORD 6alb1bz
$subsystem command words (should be 100 to
127)% 6albib2a
"COMMANDI" = 100, 6a1b1b2db
"COMMANDNn" = 10n-1; 6albibcc
¢ %% 6albibzd
g DECLARE FEFUNCTIGN 6albi1bj
1 fefuncit, 6albib3a
! fefuncn; 6a1lb1b3b
i DECLARE FUNCTION 6albiby
§ PROCESS = "PKOCESSX"™ , PACKAGE = "PCKX" 6albibla
xroutineft, 6atlbiblat
P xroutinen; 6albiblaz
§ DECLARE GLOBAL 6a1b1b5
globalil, % short description of globall §
6alb1b5a
I3 globaln; % short description of globaln §
1 6a1b1bs5b
DECLARE VAKIABLE 6alb1bb
variablel, 6albibba
variablen; 6a1b1bb6b
%% 6albibée
% CUMMON-RULES % 6aibiec

Cn-Line Programmers Management System:
Final Technical KReport
19

S in

o NI i i

e 3t A T A UAPNEEES i i

3 e o RN 5 T AN i S R S SR G

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

INCLUDE <SsSrc, NLS-Grammar, rules !universal> 6ailbilc1

rulel

{rule-body>;

rulen

{rule-body>;

%%
% COMMANDS § SUESYSTEM SubSysName KEYWORD
"SUBSYSNAME"
INITIALIZATIGON § for SubSysName %
initsubsys = xinitsubsys();

TERMINATION % for SubSysName §
trmsubsys = xtrmsubsys();

command! COMMAND = "CGCMMANDWORD1"
<rule-body>
xroutine1(variablel1, variable?2);

command2 CCMMAND = "COMMANDWORDz"
<rule-body>
xroutine2(variable1, variable2);

INCLUDE <SsSrc, NLS~Grammar, commands
funiversal>
END.

FINISH

(110)

(backend)
$BE% FILE SubSysName % BackEnd %

% CECLARATIONS %
¥ Dispatch-Table: address of routine-name-
string, address of routine %

(subsysname) EXTERNAL = (
$"XROUTINE1", $xroutinei,
$"XKOUTINEn", $xroutinen,

0,0); % table must end with zero §%
%%
% Command Words §

(cw1) CONSTANT = 100B;

(cwn) CONSTANT = 10n-1B;

%%

% X-ROUTINES §%
(xroutinel)
(xroutinen)

% CORE-ROUTINES %
(eroutinet)

4 one-line description %
% one~line description %

% one~line description §

On-Line Programmers Management System:
Final Technical Report
20

6alblcla
6alb1c2
6alb1c2a
6alblec3
6aibic3a
6aiblc3b

6a1b1d
6a1b1d1

6aibidla
6alb1d2

6alb1d2a
6alb1d3
6aib1d3a

6a1b1d3b
6alb1dl
6aibidlia

6alb1d4b

6a1lb1d5
6alb1d6
6alb1le

6a2

6a2a
6azal
6a2ala

6a2alal
6a2atlala
6a2atlatlal
6al2atatlae
6a2alalaj
6az2atlatlal
6a2alaz
6a2atlala
6a2atlazb
6a2atla2c
6a2alb
6a2aibi
6a2aib2
6a2alc
6a2atct

{
1

|
i
|

>T<'-¢£_,,'--A»<<M.MV" SR

R T,

o TRp———

b e v

R o SN AR e LA i

e SR i e i A s

BLP HGL 1-May-79 16:C1 47238

Appendix 2: PROGRAMS Subsystem Templates
(croutinen) % cne-line description % bazalc?2
% SUPPCKT-KCGUTINES ¢ CeZald
(sroutinel) % one-line description % 6bazald1
(sroutinel) % one-line descripticn % 6a2a1dz
FIN1ISh ba2ale
(case) 6azb
CASE case-exp OF bazp1
cond-exp1 6azbila
BEGIN 6azblal
END; 6a2blaz
ENDCASE; 6azZb1b
(catchphrase) 6azc
(catchname) CATCHPHKASE(argl, arge, argl3, argh); baze1
BEGIN 6a2c1a
CASE SIGNALTYPE OF bazc1b
= notetype 6a2c1b1
= helptype 6a2c1b2
= aborttype : 6a2c1bs
CASE S1GNAL OF 6azZc1bs3a
= XXX 6a2c1b3al
= yyy ¢ 6az2c1b3az2
ENDCASE; 6a2c1b3aj3
ENDCASE; falcibl
CONTINUE; bazeclc
END; 6bazc1d
(content-analyzer) 6a2d

(analyzer-name) %

PRCCEDURE (argl <type>, ...
<type>, ..., resn %);
¢ Procedure description

FUNC1ION
none

ARGUMENTS
none

RESULTS
none

NON-STANDARD CONTROL

none
%
4 Declarations %
%4procedure body%
4 Return %
HETURN;
END.
%%

CL: ; one-line-description %
, argn % => [meta-res] resi
6az2d1
6a2dl1a
6a2d1al
6a2dlala
6azd1az
6a2d1a2a
6azdlas
6a2d1asa
6azdlal
6a2dlalia
6a2d1a%
6a2d1b
6azd1c
6a2d1d
6a2d1d1
6a2dle
6a2dlel

On-Line Programmers Management System:
Final Technical FReport
21

b

el b

L

-

5 e A S S L i R, R

BLP HGL 1-May-T79 16:01
PROGRAMS Subsystem Templates

Appendix 2:

(coroutine)
(coname) $ CL: ; one-line-description %
CORUUTINE (argl <type>, ..., argn);
% Coroutine description
FUNCTION
none
ARGUMENTS
none
RESULT
none
NON-STANDAKD CONTROL
none
%

% Declarations %
% Initial entry point %
PCRT ENTRY
% Initialization %
EXIT PCALL;
§coroutine body$%
END.
%%

(cml-program)
fGRY FILE SubSysName § GRammar %
% COMPILE-INSTRUCTIGNS %
INCLUDE <SsSrc, NLS-Grammar, flags
% DECLARKAT1ONS ¢
INCLUDE <SsSrc,
funiversal>
DECLARE CCMMAND WORD
§subsystem command words (should be
127)%
"COMMAND1"
"COMMANDN"
%%
DECLARE FEFUNCT1ON
fefunci,
fefuncn;
DECLARE FUNCTION
PROCESS = "PROCESSX" ,
xroutinel,
xroutinen;
DECLARE GLOBAL
global1l,

NLS-Grammar, declarations

100 to

100,
10n=-1;

PACKAGE =

"PCKX"

globaln;

DECLARE VARIABLE

Cn-Line Programmers Management System:
Final Technical EKeport
e

4% short description of globall %

4 short description of globaln %

47238

6a2e

6aze1
6a2ela
6azelal
6a2elala
6a2el1a2
6a2elaza
6a2elaj3
6a2ela3a
6a2elal
6a2elala
6a2e1ab
6a2e b
6a2elc
6a2elc1
6a2elcla
6azelce
6aze 1d
6a2ete
6a2elel

6a2f
6acf1
6azfla

!subsystems>

6a2f1ai
6a2f1b

6a2f1b1
6a2f1b2

6a2f1b2a
6a2f1b2b
6a2f1b2c
6a2f1b2d
6a2f1b3
6a2f1b3a
6a2f1b3b
6a2f1bl
6a2f 1blda

6a2f1blal
6azfiblda2

6a2f1b5
6a2f1bSa

6a2f1b5b
6a2f1b6

AR TR SR e, e T R o S Sl 1 S o U

BLP HGL 1-May-T79 16:01
PROGRAMS Subsystem Templates

Appendix 2:

variablel,
variablen;
2%

4 COMMON-RULES %

47238

6a2f1bba
6acf1bbbdb
6a2f1bbe

6a2f1c

INCLUDE <SsSrc¢, NLS-Grammar, rules !universal> 6a2filc1

rulel <rule-body>;

rulen

%%
€ COMMANDS % SUBSYSTEM SubSysName KEYWORD
"SUBSYSNAME"
INITIALIZATION § for SubSysName %
initsubsys = xinitsubsys();

<rule-body>;

TERMINATION § for SubSysName %
trmsubsys = xtrmsubsys();

command1 COMMAND = "CCOCMMANDWCKD1"
<rule-body>
xroutinel(variable1, variablel);

commande CCMMAND = "COMMANDWCKD2"
<rule-body>
xroutine2(variablel, variablez);

INCLUDE <SsSrc, NLS-Grammar, commands
funiversal>
END.

FINISH

(do-until)
DC
BEGIN
END
UNT1L until-clause;

(do-while)
DO
BEGIN
END
WHILE while-clause;

(fefunction)
(FEFunctionName) % CL: ; one-line description §
PROCCEDUKE (reason, instruction, accumulator REF,
argecount, arguments REF, saveword % => result %);
4 FEFunction description

Cn-Line Programmers Management System:
Final Technical keport
23

6azficla
6a2flcc
6azf1c2a
6azflcs
6azfi1c3a
6a2f1c3b

6az2f1d
6a2f1d1

6a2f1dla
bazfide

6acfi1dza
6a2f1ds
6aczf1dsa

6a2f1d3b
fa2f1dd
6a2f1dka

6acf1clb

6a2f1d5
6a2f1d6
6az2fle

6azg
6a2g1
6azgila
fa2gib
6az2ge2

6az2h
6azh1
6a2hla
6azh1b
6ach2

6azi

6aci
6aczila

ot St

R s AR A A SR e it Lo

e —

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

FUNCTION 6a2ital
none 6a2itala
ARGUMENTS (show grammar arguments) 6a2i1a2
none 6azila2a
RESULT (show grammar results) 6a2itas3
none 6a2itla3a
NON-STANDARD CONTROL 6a2ital
none 6a2itlalla
g 6a2i1ab
% Declarations § 6a2i1b
CASE reason OF 6a2iilc
= parsing: §% being invoked for first time during
command % 6a2ile1
BEGIN 6a2ilcla
% decide whether FF is on the correct path
through the grammar § 6a2i1c1db
IF & not on right path, may § THEN RETURN
(notme); 6a2ilciec
% do prcocessing % 6a2i1c1d

saveword _ % word of context to be saved or 0

- if 0, will not be called during backup,

ete. % 6azilcle
cmlresults (N, result1, ... resulth); % re-

turn N results - need not be called if not
returning any results. Results returned will

be freed by the FE automatically$ 6a2itecif
RETURN (dosuc, saveword); 6a2ilcig
END; 6a2i1c1h
= terminate: § command is done, cleanup §% 6a2itc2
= abortcmd: % command was aborted, cleanup and
restore state § 6azile3
= backup: % command was backed up § 6a2i1ch
ENDCASE ABORT (???, $"Bug: Illegal reason to a
FEFunction"); 6a2il1ch
RETURN (notme); 6a2id
END. 6a2ile
%1 6az2itel
(for) 6a2j
FOR for-clause DO 6a2j1
BEGIN 6a2jl1a
END; 6a2j1b
(grammar) 6a2k
%GK% FILE SubSysName % GRammar % 6a2k1
%4 COMPILE-INSTRUCTIGONS § 6a2kl1a
INCLUDE <SsSrc, NLS-Grammar, flags !subsystems>
6a2k1al
% DECLARATIONS % 6a2k1b

On-Line Programmers Management System:

Final Technical heport
24

e, ot i (NG o

R

e

e Al S R R el e R

BLP hGL 1-May-76 16:01 47258
Appendix 2: PROGRAMS Subsystem lemplates

INCLUDE <SsSrc, NLS-Grammar, declarations

funiversal>
DECLARE COMMAND WORD

4subsystem command words (should be 100 to

127)%

"COMMAND1" = 100,

"CGMMANDNn" = 10n-1;

%%
DECLARE FUNCTICN PROUCESS = "PROCESSX"
= "PCKX" :

xroutine1l,
xroutinen;
DECLARE FEFUNCTION
fefunci,
fefuncn;
DECLARE PARSEFUNCTI1ON
pffunci,
pffuncn;
DECLAKE GLOBAL
globaltl,
globaln;
DECLARE VARIABLE
variable1l,
variablen;
%%
% COMMON-RULES %

6azk1b1
back1b2

6a2k1b2a
6a2k1b2b
back1bzc
6ack1bed

PACKAGE

6ack1b)
6ackibsa
6a2k1b3b
6a2k 1b4
6a2k1blda
6a2k1blb
6azk1b5
6aZk1b5a
6azk1b5b
6azk1bb
6ack1bba
6a2k1bbb
6a2k1b7
6azk1bTa
6a2k1b7b
6a2k1b7c
ba2kic

INCLUDE <SsSrc, NLS-Grammar, rules !universal> bazkic1

rulel = <rule-body>;

rulen <rule-body>;

%
% COMMANDS §% SUBSYSTEM SubSysName KEYWORD
"SUBSYSNAME"
INITIALIZATION § for SubSysName §
initsubsys = xinitsubsys();

TERMINATION § for SubSysName §
trmsubsys = xtrmsubsys();

command1 COMMAND = "COMMAMNDWORD1"
<rule-body>
xroutinel(variablel, variable2);

command? COMMAND = "COMMANDWORDZ"™
<rule-body>
xroutine2(variablel1, variable2);

On-Line Programmers Management System:
Final Technical keport
25

6ackicla
6a2k1c2
6azk1c2a
6a2k1ec3
6a2k1c3a
6azk1c3b

6azk1d
6a2k1d1

6az2kidila
ba2k1d2

6a2ki1dza
6a2k1d3
6az2k1d3a

6ack1d3b
6a2k1dd
6a2k1dla

6ack1dlib

T

RIS S

D e A T R s G O 5 S N e G 1A

Appendix 2:

INCLULE <SsSrc,
funiversal>
END.

FINISh

NLS-Grammar, commands

(if-then-else)
1F if-clause THEN
BEGIN
END
ELSE
BEGIN
END;

(jovial-program)
1 COMPOOL! ('compool-file') name, name;
PRCGRAM programname " Description "
BEGIN
" Program description "
" DECLARATICNS "
" FUNCTICONS DEFINED "
" one-line-description "
DEF PROC procname (input-parameteri,
input-parametern : output parameteri,
output-parametern) functiontype ;
" Procedure description
FUNCTION
none
ARGUMENTS
none
RESULTS
none
NON-STANDARD CONTROL
none
"
BEGIN -
" Declarations "
"function body"
" Return "
RETURN;
END
" SUBROUTINES DEFINED "

el R e e Sl sl

i " one-line-description "
KEF PROC (procname) (input-parameter?,
input-parametern : output parameteri,
output-parametern) ;
" Procedure description
FUNCTION
none
ARGUMENTS

= ——

On-Line Programmers Management System:
Final Technical FKeport
26

BLP HGL 1-May-79 16:01
PKOGRAMS Subsystem Templates

47258

6a2k1d5
6a2k1d6
6ackle

6a2l
6a2l1
6a2l1a
6a2l1bd
6a2l2
6a2l2a
6a2l12b

6a2m
6a2m1
6az2m2
6a2m2a
6azm2b
6a2m2c
6a2m2c1

’
i)
6a2m2cla
6a2m2clal
6a2m2c1ala
6a2m2clalail
6a2m2c1ald
6a2m2c1ai1bl
6a2m2clale
6azmzclaic
6a2m2c1ald
6a2m2c1aldi
6a2m2clale
6a2m2c1a2
6a2m2c1a3
6azm2clall
6a2m2c1ab
6a2m2c1aba
6a2m2c1ab
6a2m2ce

6a2m2c2a
6a2m2c2al
6a2m2c2ata
6a2m2c2alal
6a2m2c2ald

Sl

SEP————— .]

i Sy i b M i AP B Sl e it i Rt s BAN Y
BIPOSIRE -

e LM

i, e NS N A AR e s L S i it

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

none
KRESULTS
none
NON-STANDARD CONTROL
none
"
BEGIN
" Declarations "
"procedure body"
" Return "
RETURN;
END
" 1TEMS DEFINED "
ITEM itemname itemtype;
"program body"
END
%
(110-program)
FILE ProgramName § Description §
% DECLARATIONS ¢
%%
% PROCEDUKE %

6a2m2c2aibi
6a2m2c2ailc
bazmzczalc1
6a2m2c2ald
6a2m2c2ai1d1
6a2m2czale
6azm2c2a2
ba2mzczal
6a2m2czal
6a2m2c2a5
6a2m2c2aba
6azmzczcab
6bazm2cs
6aZ2m2c3a
6az2mzd
6azmze
6bacmze
6a2n

6azn1
baznla
6aznib
6acnic

(procname) % CL: ; one-line-description %
PRGCEDURE (arg1 <type>, ..., argn % => [meta-

res] res1 <type>, ..., resn %);
% Procedure description
FUNCTI1ON
none
ARGUMENTS
none
RESULTS
none
NON-STANDARD CONTKOL
none
%

% Declarations %
$procedure body$%
% Return §
KETURN;
END.
131
FINISH
(11011-program)
F1LE ProgramName ¥ Description §
% DECLAKATIONS %
13
% PROCEDURE ¢

On-Line Programmers Management System:
Final Technical Report
217

6aznic1
6aznicila
6a2niclai
6a2niclala
6a2niclaz
6azniclaza
6a2niclas
6a2niclasa
6acniclal
6aznilclala
6a2nicl1as
6a2nici1b
6aznicic
6az2nicid
6a2nici1di
6a2nicle
6a2nicle
6a2n1d
6a2c

6azo1
6a2ola
6a2o1b
6a2oic

L

i v L o RIS o

ar s

i b P el B 2 e 0 ST A

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

(procname) $ CL: ; one-line-description §

PROCEDURE (arg! <type>, ..., argn % => [meta-

res] rest1 <type>, ..., resn %); 6a2o1c?

¥ Procedure description 6a2o1cla

FUNCTION 6a2o01ctail

none 6a201clala

ARGUMENTS 6a2o1c1a2

none 6a2o01cla2a

KRESULTS 6a2o01c1aj3

none 6azolcla3a

NOGN~-STANDARD CCNTROL 6a2ol1clal

none 6azolclalia

% 6a2o1c1ab

% Declarations % 6a2otc1d

$procedure body% 6a2olcile

% Return ¢ 6a2o1cid

RETURN; 6a2o01c1d1

END. 6a2o01cle

%% 6a2o01cle

FINISH 6a201d

(loop) 6a2p

LOGP 6a2p1

BEGIN 6a2pla

END; 6a2pib

(meta-program) 6a2q

FI1LE filename ChECK 6azq1

META program 6a2q2

% Compiler header. § 6a2q3

EKROR: ; 6a2ql

SIZE: ; 6a2q5

FLAGS: ; 6a2qb

DUMMY: ; 6a2qT

SET: 3 6a2q8

FIELDS: ; 6azq9

ATTRIBUTES: ; 6a2q10

OPCODES: 6azq11

$ Compiler header syntax. % 6a2q12

% Rules. § 6a2q13

END of TREE META 6azq1l

(code) 6azr

4PFC% COROUTINE (parmt, parmz, parm3); 6a2r1

END. 6a2ria

(data) 6a2s

4PFD$ F1LE SubSysName § Parse/Fe functions Data % 6a2s1

FINISH 6a2sla

(function) 6a2t
(ParseFunctionName) $ CL: ; one-line-description %

COROUTINE (reason, instruction, accumulator REF,
argcount, arguments REF, saveword % => result $%); 6a2t1

Cn-Line Programmers Management System:
Final Technical Report
28

i3 i KN AN R A DA

SRR TR

O . TTRR———

R

ELP hGL 1-May-79 16:01 47238
Appendix 2: PKOGRAMS Subsystem Templates

% Parsefunction description
FUNCTION
none
ARGUMENTS (show grammar arguments)
none
RESULT (show grammar results)
none
NCN-STANDARD CONTKOL
none
%
% Declarations %
% Initial entry point %
PORT ENTRY
¢ initialization §
EX1T PCALL;
§coroutine body%
END.
%%
(parsefunction)
(ParseFunctionName) 4 CL: ; one-line-description
CORCUTINE (reason, instruction, accumulator KEF,
argcount, arguments REF, saveword § => result %);
% Parsefunction description
FUNCTION
none
ARGUMENTIS (show grammar arguments)
none
KESULT (show grammar results)
none
NON-STANDARD CONTROL
none
%

% Declarations §%
% Initial entry point §%
PORT ENTRY
% Initialization §
EXIT PCALL;
4coroutine body$%
END.
13
(procedure)
(procname) 4 CL: ; one-line-description %
PROCEDUKE (argl <type>,
{type>, ..., resn %);
% Procedure description
FUNCTION
none
ARGUMENTS
none

On-Line Programmers Management System:
Final Technical Report
29

6a2tla
6azt1a1
bactlala
6a2t1az
6a2tl1aa
a2t lajs
6a2tl1a3a
6a2t1al
6az2tlaka
6a2t1as
6a2t 1b
6a2t1c
6a2t1c1
6azticla
6a2t1c2
6azct 1d
6a2t e
6a2tle1l
6azu

6azut
6a2uila
6a2ulanl
6a2ulaila
6a2ulaz
6azulacza
6aculas
6azutla3a
6aculal
6a2ulala
6a2ulas
6a2uilb
6a2uilec
6a2uilci
6a2uicila
6a2uilce
6a2uid
6a2ule
6a2ulel
bacv

., argn % => [meta-res] resi

6azcv1
6bazvia
6azvial

6ba2viala

6a2viaz

6a2viaza

LA s b

e 2 S R S S NN e Bty i B A e e

BLP
Appendix 2: PROGRAMS

KESULTS
none

NON-STANDAKD CONTROL
none

%

% Declarations §
fprocedure body%
% Return %
RETURN;
END.
1 3

(program)

%GR% FILE SubSysName % GRammar %

% COMPILE-INSTRUCTIONS §
INCLUDE <SsSrc, NLS-Grammar,

HGL 1-May-79 16:01 47238
Subsystem Templates

6a2via3
6a2via3a
ba2vial
6a2viala
6a2viab
6a2vib
6azvic
6a2vid
6a2v1d1
6a2vie
6a2viel

6a2w
6a2w1
6a2wila
flags !subsystems>

6a2wlal
4 DECLARATIONS §% 6a2w1b
INCLUDE <SsSrc, NLS-Grammar, declarations
funiversal> 6a2wib1
DECLARE COMMAND WORD 6a2wib2
$subsystem command words (should be 100 to
127)% 6a2wib2a
"COMMAND1" = 100, 6a2wib2b
"COMMANDNn" = 10n-1; 6a2wib2c
%% 6a2wibad
DECLARE FEFUNCTION 6a2w1b3
fefunci, 6a2wib3a
fefuncn; 6a2wi1b3b
DECLARE FUNCTION 6a2wibl
PROCESS = "PROCESSX" , PACKAGE = "PCKX" : 6a2wibla
xroutinei, : 6a2wibldal
xroutinen; 6a2wibla2
DECLARE GLOBAL 6a2w1b5
global1, % short description of globall %
6a2wi1bSa
globaln; % short description of globaln %
6a2w1b5b
DECLARE VARIABLE 6a2w1bb
variablel, 6a2wibba
variablen; 6a2wib6d
6a2wibbe
% COMMON-RULES % 6a2wic
INCLUDE <SsSrc, NLS-Grammar, rules luniversal> 6a2wic!i
6a2wicla
rulel = <rule-body>; 6a2wic?2
6a2wic2a
rulen = <rule-body>; 6a2wic3
6a2wic3a

On-Line Programmers Management System:

Final Technical Report
30

AR A T e S A S N AT T e A S B

et A T WOy S it o eoiba s SRS G S I

A PR 3 s aw

B A SRR VA B A D L B e T SR b i

2 T ol
¥ P i S GBS 1 T S e M R LN SRR R

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

% 6a2wilc3b
% COMMANDS % SUBSYS1EM SubSyshame KEYWGCKD
"SUBSYSNAME"™ 6a2wid
INIT1ALIZATICOKN ¥ for SubSysName § bazwid1
initsubsys = xinitsubsys();
6azwldla
TERMINATICON % for SubSysName % 6a2wide
trmsubsys = xtrmsubsys();
ba2wldza
command1! COMMAND = "COMMANDWORD1" 6a2wi1d3
<rule-body> 6a2wldsa
xroutinel(variablel, variable2);
6a2w1d3b
command2 COMMAND = "COMMANDWOKD2" 6a2widd
<rule-body> 6a2widlda
xroutine2(variable1, variablez);
6a2wi1dlib
INCLUDE <SsSrc, NLS-Grammar, commands
luniversal> 6acw1d5
END. 6a2w1db
FINISH bazwile
PFC FILE SubSysName ¥ Parse/Fe functions Code % 6a2w2
% DECLARATIONS § 6a2wza]
% CODE % ba2wzb]
(FEFunctionName) % CL: ; one-line description
PRCCEDURE (reason, instruction, accumulator KEF, 4
argcount, arguments KEF, saveword % => result |
%); 6azw2b1]
$ FEFunction description 6a2wabla ,
FUNCTION 6a2w2blai :
none 6a2w2blala)
ARGUMENTS 6a2w2bilaz
reason - reason fefunction is being
invoked 6a2w2blaza
instruction - byte pointer to grammar E
instruction 6acw2blaczhb]
accumulator - pointer to global
accumulator 6azw2bla2c A
argecount - count of number of arguments 4
from grammar call 6a2w2blacd 4
arguments - pointer to array of argu- B
ment values from grammar call 6a2w2blaze i
saveword - word of context retained by
Frontend 6a2wzblazf
RESULT 6a2webilaj
reason describing fefunction result
6azw2bla3a

On-Line Programmers Management System:
Final Technical Report
31 i

e G e v o i L

A

s AN i 7t N BN s R g i MR B R B AR S Y S

BLP HGL 1-May-T9 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

NON-STANDARD CONTROL 6a2w2bilaly
none 6a2w2bilala
% 6a2w2bi1ab
% Declarations § 6a2w2b1b
CASE reason OF 6a2w2bic
= parsing: % being invoked for first time
during command % 6a2w2bic1
BEGIN 6a2w2bilcila
% decide whether FF is on the correct
path through the grammar § 6a2w2bic1d
IF % not on right path % THEN KETURN
(notme); 6a2w2bilcic
% do processing % 6a2w2blc1d
saveword _ % word of context to be
saved or 0 - if 0, will not be called
during backup, etc. §%; 6a2wzbicle

cmlresults (N, resultl, ... resultN); §%
return N results - need not be called
if not returning any results. FKesults
returned will be freed by the FE auto-

matically$ 6a2w2bilcif
RETUKN (dosuc, saveword); 6a2w2bicig
END; 6a2w2bic1h
= terminate: § command is done, cleanup %
6a2w2bilc2
= abortcmd: % command was aborted, cleanup
and restore state % 6a2w2bilec3
= backup: % command was backed up % 6a2w2bicl
ENDCASE ABORT (???, $"Bug: 1Illegal reason
to a FEFunction"); 6a2w2b1cS
RETURN; 6a2w2b1d
END. 6azw2bile
%% 6a2w2ble

(ParseFunctionName) $ CL: ; one-line-
description %

COROUTINE (reason, instruction, accumulator KEF,
argecount, arguments KEF, saveword % => result

%); 6a2w2b2
% Parsefunction description 6a2w2b2a
FUNCTION 6a2w2b2a
none 6a2w2b2aila
ARGUMENTS 6a2w2b2a?
reason - reason parsefunction is being
invoked 6a2w2b2az2a
instruction - byte pointer to grammar
instruction 6a2w2b2a2b
accumulator - pointer to global
accumulator 6a2w2b2a2e

On-Line Programmers Management System:
Final Technical Report
32

R R e T S e

BLP HGL 1-May-T79 16:01 47238
Appendix 2: PRCGKAMS Subsystem Templates

argcount - count of number of arguments
from grammar call 6a2wzb2acd
arguments - pointer to array of argu-
ment values from grammar call 6a2wzbzace
saveword - word of context retained by
Frontend 6bazw2bzcacf
RESULT 6a2w2b2a3
reason describing parsefunction result
6a2wcblajia
NON-STANDARD CONTIKOL 6a2web2al
none 6a2w2b2ala
3 6a2w2bzab
% Declarations % 6a2w2b2b
% Initial entry pcint % 6a2wzb2c
PORT ENTRY 6a2w2b2c1
%4 Initialization % 6a2w2b2cla
EXIT PCALL; 6a2w2b2c?
<coroutine body> 6azw2b2d
END. ba2wzb2e
%% 6a2w2b2e
F1IN1ISH baz2w2c

$PFD% FI1LE SubSysName % Parse/Fe functions Data % 6a2w3
FINISH 6a2w3ia

$EE% FILE SubSysName % BackEnd % bazwl
% DECLARATIONS % 6a2wla

% Dispatch-Table: address of routine-name-
string, address of rcutine % 6a2wlal
(subsysname) EXTERNAL = (bazwlala
$¢"XROUTINE1", ¢xroutinet, 6azwlalal
$"XROUT1INEn", ¢xroutinen, 6a2wlalaz
0,0); % table must end with zero % ba2wlala3
% bal2wlalal
4 Command Words % 6a2wlaz
(cw1l) CONSTANT 100B; 6a2wlhaca
(cwn) CONSTANT 10n-1E; 6azwla2b
%% ba2wlaz2c
%9 X-KOUTINES & 6azwlb
(xroutinei) % one-line description 6a2wlb1
(xroutinen) % one-line description 6a2wlb2
% CORE-ROUTINES % bacwlc
(croutinel) % one-line description 6a2wlc1
(croutinen) % one-line description 6az2wlc2
% SUPPORT-ROUTINES ¢ 6ba2wla
(sroutinel) 4 one-line description 6a2wld1
(sroutinel) % one-line description 6azwld2
FINISH bazwle

Cn-Line Programmers Management System:
Final Technical Report
33

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

(run-program)
FILE ProgramName % Description %
% DECLARATIONS %

(ProgramName) %$ CL: ; one-line-description %

PROCEDURE (arg! <type>, ..., argn % => [meta-res] resi
<type>, ..., resn %); 6a2x2
% Procedure description 6a2x2a
FUNCTION 6a2x2a1
none 6a2x2ala
ARGUMENTS 6a2x2a2
none 6a2x2aza
RESULTS 6a2x2a3
none 6a2x2aj3a
NON-STANDARD CONTROL 6a2x2ali
none 6a2x2ala
% 6a2x2a5
% Declarations % 6a2x2b
$procedure body$% 6a2x2c
% Return % 6a2x2d
KETURN; 6a2x2d1
END. 6a2x2e
FINISH %% 6a2x2f

(sequence-generator) 6a2y
(nameofseqgen) $ CL: ; one-line-description §
PROCEDURE (sw REF, entrytype); 6a2y1
%4 Procedure description 6a2yla
FUNCTION 6a2ylai
This is a user sequence generator. That . .
5 6a2ylala
AKGUMENTS 6a2y1a2
sw - RKEF-address of sequence work area. See
record def, (nine, brecords, segr). 6a2yla2a
entrytype - INTEGER-entry type. 6a2yt1azb
=sqopn: called at seq open tc initialize
a work area 6a2yt1a2b1
=sqgnxt: called for next in seq 6a2y1a2b2
=sqcls: called at seq close to release
the workarea 6a2y1a2b3
RESULTS 6a2yt1a3
none 6a2yla3a
NCN-STANDARD CONTROL 6a2ylal
when called with entry type sqgnxt, a pseudo
coroutine is used for the sequence generator
return mechanism. Control is given up by
calling send or sport, which eventually
switches the stack. Control is returned when

Un-Line Programmers Management System:
Final Technical heport
34

o L

il

5
o

st o A L

RN TR R o, o

o R S A A N SR

BLP HGL 1-May-79 16:01 47238
Appendix 2: PKOGKAMS Subsystem lemplates
a call is made to seqgen, which makes a
coroutine port call to the stack associated
with this sequence work area. bazylala
L signal is generated (err is called) when
the seq generator is called with an illegal
entry type. bazylalo
Note: for an example look at system sequence
generator. 6a2ylalc
% 6a2yl1a$s
% Declarations % 6azcy1b
% Caution!! Locals are not consistent across en-
tries % 6a2yib1
% select entry point % bazylc
CASE entrytype OF 6a2yilc1
=sqopn: %4 called at seq open % 6a2ylicia
NULL; 6a2ylcilail
=sqgnxt: % call for next in seq % 6az2yleci1b
LCGGOP 6azylcib1
BEGIN 6a2yicibla

% perf rm activities unique to this seq

generator %

4 make "coroutine" call via call to

send or sport ¢

% send($sw,

work area
$str);

of a string %

% sport($sw);

work area %

% returned here by sport call from

- addr of sequence

6azylec1lbib

6azyicibic

- addr of a sequence

6a2y1c1bid

- an ENDF1L or addr

6a2y1cibile

bazylecibif

seqgen % 6azyilcibilg

% get next in sequence % 6acylcibih

END; bacyle1bi1i

=sqcls: % called at seq close % 6a2ylcic

NULL; 6a2ylcile1

ENDCASE err($"bug"); 6a2yicid

4 Return % 6a2y1d
RETURN; 6a2yl1d1

END. 6a2yle

1% 6azylel
(sort-key) 6a2z2
(SortName) FILE 6a2z1
ALLOW! 6a2z1a
4Declarations$® 6a2z2
%...Default key procedure...$% 6a2z3

On-Line Programmers Management System:
Final Technical Report

35

T T

s e b

e e

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

(defkey) % CL: ; one-line-description %
PROCEDURE (stid, % handle of the statement begin

considered %

buffer, % address of a buffer to hold the

sorting index %

bufflength); % the maximum size (in words) of

the sorting index %
% Procedure description
FUNCTION
none
ARGUMENTS
none
RESULTS
none
NON-STANDARD CONTROL
none
%

% Declarations %
¢$procedure body%
% Return %

6a2z3a
6a2z3al

6a2z3a?2
6a2z3a3
6a2z3a3a
6a2z3a3al
6a2z3a3b
6a2z3a3b1
6a2z3a3c
6a2z3a3ct
6a2z3a3d
6a2z3a3d1
6a2z3aj3e
6a2z3al
6az2z3ab
6a2z3ab

RETURN (partial-index-flag, % TRUE - data in

buffer only high-order bits of the sorting

index FALSE - buffer value is full sorting

index %

6a2z3aba

word-count); % integer indicating the number

of words actually used in the buffer §

END.

%
buffer, bufflength);

F1INISH

(subsystem)
$GR% FILE SubSysName % GRammar %
% COMPILE-INSTRUCTIONS §

INCLUDE <SsSrc, NLS-Grammar, flags

% DECLARATIONS %

INCLUDE <SsSrc, NLS-Grammar, declarations

funiversal>
DECLARE COMMAND WCRD

$subsystem command words (should be 100 to

127)%
"COMMANDI" = 100,
"COMMANDn" = 10n-1;
%%

DECLARE FEFUNCTICN
fefunci,

On-Line Programmers Management System:
Final Technical Report
36

6a2z3abb
6a2z3a”7
6az2z3aTa
6a2z3b
6a2z3c

6a2zl
6a2aa

6a2aal
6a2aala

!subsystems>

6a2aalal
6azaalb

6a2aaib1
6azaailbe

6a2aalb2a
6a2aaib2b
6a2aaib2c
6a2aaib2d

6a2aalb3
6a2aaib3a

g
:
i
i
'!_
:

T D ARSI

L

T

s P L S D i s N B R i AR A O P S e s RS e i

BLP HGL 1-May-79 16:

Appendix 2: PROGRAMS Subsystem Templa

01 47238
tes

fefuncn; 6a2aaib3db
DECLARE FUNCTION 6azaalbd
PROCESS = "PRCCESSX" , PACKAGE = "PCKX" 6a2aalbla
xroutine1l, 6a2aalblan
xroutinen; 6azaalbldaz
DECLARE GLGBAL 6a2aalbb
globall, % short description of globall §
6a2aalilbb5a
globaln; % short description of globaln %
6a2aa1b5b
DECLARE VARIABLE 6azaalbb
variablel, 6a2aalbba
variablen; 6a2aa1bbb
%% 6a2aalbbe
% COMMON-RULES % 6a2aalc
INCLUDE <SsSrc, NLS-Grammar, rules !universal)
6azaalci
6azaalcla
rulel = <rule-body>; bazaalec2
6a2aaicia
rulen = <rule-body>; 6a2aalc3
6azaalc3a
%% 6azaalc3db
% CCMMANDS % SUBSYSTEM SubSysName KEYWORD
"SUESYSNAME" 6a2aald
INITIALL1ZATION % for SubSysName % 6a2aaldt

initsubsys = xinitsubsys();

TEKMINATION % for SubSysName §%
trmsubsys = xtrmsubsys();

ccmmand1l COMMAND = "COMMANDWORD1"™
<rule~body>
xroutinei(variable1, variable2);

command2 COMMAND = "COMMANDWORDZ"
<rule-body>
xroutine2(variablel, variable2);

INCLUDE <SsSrc, NLS-Grammar, commands
funiversal>
END.

FINISH

$PFC% F1lLE SubSysName
% DECLARATIONS ¢
% CODL §%
;FEFunctionName) % CL: ;

% Parse/Fe functions Code §

one-line descripti

On-Line Programmers Management System:

Final Technical Report
37

6acaatldla
6a2aald2

6acaaldza
6a2aald3
6acaald3a

6a2aai1d3b
6a2aaldd
6a2aaldlia

6a2aaldidb

6a2aa1db
6a2aal1db
6a2aale

6a2aaz

6a2aa2a

6a2aacb
on

il

-

i
i
3
1
p
|
:
4
]

i
i

RS o i s (RN D 2

R R T T e

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

PRCCELURE (reason, instruction, accumulator KEF,
argcount, arguments KEF, saveword § => result

%2); 6a2aa2bi
% FEFunction description 6a2aa2bila
FUNCTION 6a2aa2blal
none 6a2aa2blala
ARGUMENTS 6a2aa2bla2
reason - reason fefunction is being
invoked 6a2aaz2blala
instruction - byte pointer to grammar
instruction 6azaa2bla2b
accumulator - pointer to global
accumulator 6a2aa2blacze
argcount - count of number of arguments
from grammar call 6azaa2blazd
arguments - pointer to array of argu-
ment values from grammar call 6a2aa2blaze
saveword - word of context retained by
Frontend 6a2aa2blazf
RESULT 6a2aa2bla3

reason describing fefunction result
6a2aazbla3a

NON-STANDARD CONTROL 6a2aa2blal
none 6a2aa2blalia
% 6a2aa2blas
% Declarations § 6azaa2bib
CASE reason OF 6a2aa2bic
= parsing: % being invoked for first time
during command % 6a2aa2bilec1
BEGIM 6a2aa2bilcla
4 decide whether FF is on the correct
path through the grammar § 6a2aaz2bic1b
IF % not on right path % THEN KETURN
(notme); 6a2aa2bicie
% do processing § 6a2aa2blec1d

saveword _ % word of context to be

saved or 0 - if 0, will not be called

during backup, etc. %; 6a2aa2bilcle
ecmlresults (N, resultl, ... resultN); %
return N results - need not be called

if not returning any results. Results
returned will be freed by the FE auto-

matically$ 6a2aa2blicif
RETURN (dosuc, saveword); 6a2aa2blcig
END; 6a2aa2bic1h

= terminate: $ command is done, cleanup %
6az2aa2blec2

= abortemd: § command was aborted, cleanup
and restore state % 6a2aa2bic3

On-Line Programmers Management System:
Final Technical Report
38

|
|
|
|

e A AR RN 4. Wl ey ST L S BN D e

BLP hGL 1-May-79 16:01 47238
Appendix 2: PRCGRAMS Subsystem Templates

= backup: % command was backed up % 6azaacbicd
ENDCASE ABOURT (2?2, §"Bug: 1lllegal reason

to a FEFunction"); bazaazbi1cH

RETURN; bazzazcb1d

END. bacaaczble

32 pazaacblel
(ParseFunctionName) % CL: ; one-line-

description %
CCROUT1INE (reason, instruction, accumulator hEifF,
argcount, arguments REF, saveword % => result

%); 6azaazb2
% Parsefunction description 6a2aazbla
FUNCT1ON fazaacb2al
none bacaaczbZala
ARGUMENTS 6acaazbzaz
reason - reason parsefunction is being
invoked fa2aa2b2aca
instruction - byte pointer to grammar
instruction 6azaazZbzach
accumulator - pointer tc global
accumulator 6azaazbcazace
argcount - count of number of arguments
from grammar call : 6acaaczbiacd
arguments - pointer to array of argu-
ment values from grammar call 6acaaZbcace
saveword - word of context retained by
Frontend 6a2aazblazf
RESULT 6acaazbias

reason describing parsefunction result
bazaa2b2asa

NON-STANDAKD CONTROL 6bacaa2bcad

none fpalaacbcala

% bacaacbzas

%4 Declarations % 6a2aacbib

% Initial entry point % 6acaacbece

PORT ENTHhRY bacaacbect

$ lnitialization % : 6acaacbiecla

EXIT PCALL; 6acaacbzc?

<coroutine body> 6a2aaczbad

END. 6acaa2ble

%% 6azaacbce

F1N1SH 6azcaace
PFD% FILE SubSysName §% Parse/Fe functions Data % bazaajl
FINISH 6bacaasa
YBE% FILE SubSysName % bBackEnd % bacaal
%9 DECLARATIONS % 6acaala

On-Line Programmers Management System:
Final Technical Report
39

s

e g

. v
T O o

BLF HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

% Dispatch-Table: address of routine-name-
string, address of routine %

(subsysname) EXTERNAL = (
$"XRCUTINE1", $xroutinel,
$"XKOUTINEn", $xroutinen,

0,0); % table must end with zero %
%%
4 Command words %

(cw1) CONSTANT = 100B;

(cwn) CONSTANT = 10n-1b;

%%

% X-ROUTINES %
(xroutine1)
(xroutinen)

4 CORE-KOGUTINES %
(croutine1i) one-line description

% one-line description
%
%
(croutinen) % one-line description
S
%
%

one-line description

% SUPPORT-KOUTINES %
(sroutinel) one-line description
(srcutinei) one-line description
F1IN1SH

L % Y @ ¥ R B

(support-module)

% SUP % FILE ProgramName % Support FKoutine %
4 DECLARATIONS %
%%
% PROCEDURE ¢
(procname) $ CL: ; one-line-description

6azaalal
6a2aallala
6a2aaliatal
6a2aaliatla2
6a2aalialaj3
6a2aalatlal
6a2aaliaz
6a2aalia2a
6acaalia2b
6a2aalia2c
6a2aalb
6a2aalb1
6a2aalb2
6a2aalc
6azaalc
6az2aalc2
6azaald
6acaalddi
6a2aald2
6al2aale

6a2ab
6a2ab1
6azabla
6a2abib
6a2abilec

%

PROCEDURE (argl <type>, ..., argn % => [meta-

res] res1 <type>, ..., resn %);
% Procedure description
FUNCTION
none
ARGUMENTS
none
RESULTS
none
NON-STANDARD CONTKOL
none
%

% Declarations %
4procedure body$%
% Return %
RETUKN;

%%

4 PROCEDURE %

END

On-Line Programmers Management System:
Final Technical EKeport
40

6azablec1
6a2abicla
6a2abilclanl
6a2ablclala
6a2abilcla2
6bazabicla2a
6acabilclas
6a2abilcla3a
6a2abilclal
6a2ablclalia
6a2abilcias
6a2abilcib
6a2abilcic
6a2abilcid
6azabilc1d1
6a2ablcile
6a2abilcle
6a2ab1d

TR Y

S S R S ST

s

e

R

it

L S S OV G e e v T P L N

T XS MM £t % b

BLP HGL 1-May-79 16:01 47258
Appendix 2: PKOGRAMS Subsystem Templates

(procname) $ CL: ; one-line-description §%
PRCCEDURE (argl <type>, ..., argn % => [meta-

res] rest <type>, ..., resn %); 6acab1d1

% Procedure description 6a2abildla

FUNCT1ON ba2abidial

none 6azabldlala

ARGUMENTS 6azabild1az

none 6a2abildlacza

RESULTS 6a2abi1dl1as3

none 6a2abldlasa

NON-STANDARD CONTKOL 6azabldial

none 6azabildlala

% 6azabid1as

4 Declarations % 6a2ab1d1p

4procedure body$% 6a2abidiec

% Return ¢ 6azabl1d1d

RETURN; 6azabid1d1

END. bazabildle

%% 6a2abidiel

FINISH 6a2abile

(until-do) 6a2ac

UNTIL until-clause LG 6a2ac1

BEGIN 6al2acila

END; 6a2acib

(while=-do) 6azad

WHILE while-clause DO 6a2ad1

BEGIN 6azadla

END; 6a2ad1b

(jovial) 6as

(directive) 6a3a

1CCMPOOL 'compool-file' name, name ; 6asal

(source) 6a3b

COMPOCL compool-name ; 6a3b1

BEGIN 6a3bla

END 6a3b1b

(by-while) 6a3e
FCR index: initial BY increment WHILE index relational

stopvalue; 6a3c1

BEGIN 6aicla

END 6a3cib

(then-while) 6a3d

FOGR item-name THEN formula WHILE conditional-formula ; 6a3d1

Cn-Line Programmers Management System:

Final Technical Report
41

e

el b il 8 Al o e S0l S o

e

T TR YRR g,

BLP HGL 1-May-T79 16:01 47238
appendix 2: PROGRAMS Subsystem Templates

R SR S S A R ik ST NN s o Tout

input-parametern : output parametert, ...,

statement ; 6a3dla
3 (if-else) 6a3e
% 1F conditional-formula ; 6a3e1
4 statement ; 6a3ela
ELSE else-statement ; 6a3e2
3 (call) 6a3f
2 prccedure-name@data-base(input-parameter, input-
4 parameter : output-parameter, output-parameter) ;
- "comment" 6a3f1
(declaration) 6a3g
PROC procedure-name data-allocator(input-parameter,
input-parameter : output-parameter, output-parameter)
3 6a3g1
BEG1N 6a3gla
"DECLARATIONS" 6a3g1b
el "PRCCEDURE BODY" 6a3glc
| END 6a3gld
% (program) 6a3h
% 1CCMPOOL! ('JT73I0.CMP'); 6a3h1
§ PROGRAM programname " Description " 6a3h2
i BEGI1N : 6a3h2a
§ " Program description " 6a3h2b : 9
" DECLARATIONS " 6a3h2c ;
_ " EXTERNAL PROCELURES " 6a3h2c1 1 3
: " one-line-description " ! 3
g REF PROC procname (input-parameteril, ...,]
! output-parametern) ; 6a3h2c1a
; " Procedure description 6a3h2clai 4
% FUNCTION 6ash2clala]
3 none 6a3h2clalail ‘
? ARGUMENTS 6a3h2clailb
| none 6a3h2claib1
| RESULTS 6a3h2clale
none 6a3h2clalel
| NON-STANDARD CONTROL 6ash2ciaild ;
| none 6a3h2claldi
g v 6a3h2clale
i BEGIN 6a3h2cla2
| " Declarations " 6a3h2ctas
END 6a3h2clal
" SUBROUTINES DEFINED " 6a3h2c2

" one-line-description "

On-Line Programmers Management System:
Final Technical FReport
42

i
|
|
|

2 B e s e A e i oo, A R R

iy cimd

BLP HGL 1-May-7% 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

DEF PROC (procname) (input-parameteril, ...,
input-parametern : output parameteri, ...

’
output-parametern) ; 6a3hzc2a
" Procedure description 6a3h2c2a1]
i FUNCT1ON 6a3hzc2ala
{ none 6a3hec2alal 3
g ARGUMENTS 6a3h2c2alb E
- none 6a3h2czalbil
] KESULTS 6ashzc2ale
i- none 6aih2c2aic1 .
1 NON-STANDARD CONTROL 6a3h2c2ald 1
none 6a3h2c2aldi 4
i " 6a3hzc2ale
; BEGIN 6a3h2c2az
i " Declarations " 6a3h2c2a3
i "procedure body" 6a3hzc2al
" Return " 6a3h2c2ab
RETURN; 6a3h2c2ab5a
i END 6ashzc2ab
: " 1TEMS DEFINED " 6a3h2es3
1TEM itemname itemtype; 6ash2csa
"program body" ' 6ashad
END 6ashce
%% 6ashzel :
(declaration) 6a3i :
PROGRAM program-name ; 6a3iil p
BEGIN ha3ila
"DECLARATIONS" 6a3i1b 1
"PRCGRAM BCDY" 6a3ile
END "program-name" 6asitd
(switch) 6a3j
SWITCH numeric-formula ; 6a3j1
BEGIN 6a3jla g
[] statement ; 6a3j1b
[] statement ; 6a3jle
| [] statement ; 6a3j1d
.-‘ END 6a3jle
: (while) 6a3k :
WHILE conditional-formula ; 6a3k1
;‘ controlled-statement ; . 6a3kla
§ (meta) 6al ,
] 4
2 (program) 6ala :
FILE filename & one line comment § 6aldal
META program 6alala

On-Line Programmers Management System:
Final Technical hkeport
43

1
y
|
!
:
¢

AT

RV & A A

BLP HGL 1-May-79 16:01 47238
Appendix 2: PROGRAMS Subsystem Templates

% COMPILER HEADER §
DUMMY :
ERROk:
FLAGS:
ATTRUBUTES:
OPCODES:
SET:
SIZE:
FIELDS:
% SYNTAX RULES %
identifier = rulebody;
% PROCDUCTION RULES ¢
identifier[test-expression] =>
production-rule-body;
identifier(test-expression] =>
production-rule-body;
% VALUE RULES %
identifier[test-expression] :=
value-rule-body;
identifier[test-expression] :=
value-rule-body;
FINISH

ballatlal
6allalaila
6alalaid
6alalaile
6aldataid
6alatlaite
baliatlaif
6alialaig
6aliataih
6allatla2
6allalala
6allata3
6allatla3a
6albatla3al
6alala3b
6alala3bi
6allatlall
6allatlalia
6allalalian
6allatlalid
6allatlalib1
6aldalb

On-Line Programmers Management System:
Final Technical FReport
1]

S e

R IR T

?
1

S A A e A i e AT A R S R S A, e 7 (Rt i : e e T AT

BLP HGL 1-May-7$9 16:01
Appendix 3: Command Sequence Frocessor Design Specifications

Appendix 3: Command Sequence Processor Design Specifications:
AUGMENT Journal (29046,) Donald 1. Andrews, 28 January 1679

COMMAND SEQUENCE PROCESSUk DESIGN SPECLFICATICNS

Preface

This report is a user-level description of an National Soft-
ware Works facility for writing and executing Command
Sequences for NSwW tools and the NSw EXEC. it was prepared
for the RADC NSW project, Contract F 30602-75-C-0320

Introduction

A Command Sequence is a collection of one or more commands
‘with a unique name. The user invokes a Command Sequence by
its name; the NSW Frontend then processes the Sequence as if
the user were typing in that collection of commands himself.
The commands available for Command Sequence use include the
NSW EXEC commands, all split tool commands, and unsplit tool
input--in short, everything the user is allowed to do in the
NSW, including the use of other Command Sequences. 1lhis
Frontend feature and its asscclated program modules are
called the Command Sequence Processor.

The great advantage of a Command Sequence facility, of
course, is that it allows users to "program" in the command
language with which they are familiar; that is, they can
specify a series of operations and have this "Program" exe-
cuted at any time. No programming language must be learned.
Although this kind of facility is available on many time-
sharing systems, it is generally missing the control
constructs (e.g., IF, FOR, CASE) so heavily used in
algorithmic languages. The NSw Command Sequence Processor
includes control features, and hence provides a complete
language for "command programming".

The CLI grammar-driven interface system, with its recogni-
tion modes, feedback and noise words, and help features, is
a significant improvement in making man-machine interfaces
coherent and natural. The inclusion of the Command Sequence
facility complements a powerful system by bringing
programming-like capabilities into the user interface.

Un-Line Programmers Management System:
Final Technical Report
45

by e

47238

Ta

Tb

Tb1

Te

Tc1

Tece

Te3

“= TN

- I e e o 4

R

BLP HGL 1-May-79 16:01 47238
Appendix 3: Command Sequence Processor Design Specifications

Capabilities 7d

The Command Sequence Processor (CSP) will have three basic
capabilities: Td1

Running "canned" command strings, in the same manner as
TENEX Runfile. Td1la

Collecting selections from the user at Command Sequence
execution time. These may be used (perhaps more than
once during an execution) as user supplied arguments in]
the canned commands. 7d1b

Testing conditions and doing different things based on

the outcome. The conditions may be user input, vari-

ables, or the results of commands. Further, control

constructs allow sequences to loop over a group of com-

mands until a specified condition is met. Td1iec

The CSP operates independently of the Command Language
Interpreter, and hence functions across the EXEC and all

tools. The sequences may contain commands to run a tool,

followed by commands for the tool, followed by more EXEC

commands, and so forth. 7d2

What the User Needs to Know Te

A minimum of information is required to use the CSP. The
user need not learn a new language since a Command Sequence
is constructed of user-level commands, written in textual
form exactly as he would see them when executing such com-
mands. The command words are written in full; noise words
may or may not be present. Tel '§

To have the Command Sequence performed, the user executes a

CSP command (available at the EXEC and all split tools),
specifying a Command Sequence name and arguments, if any.

As an alternative, he can have the sequence name available

as a top-level command in all grammars (EXEC and all split

tools). Te2

PSR

Although Command Sequences cannot be invoked from an unsplit
tool without escaping back to the EXEC, they can specify
commands for unsplit tools. 1In that case, the Command Se-
quence will contain the text that would be typed to the tool
from the terminal, which may not be as readable for the user

S A s - Rk A TS i el

i e A 5 AR e N S B a3 e

?.1

On-Line Programmers Management System:
Final Technical Keport
46 ¥

" 3

msellahl v

BLP HGL 1-May-79 16:01 47238
Appendix 3: Command Sequence Processor Design Specifications

as Command Sequences for split tools. This is unavoidable
since the command recognition mode of unsplit tools in gen-
eral cannot be controlled. Te3

To take advantage of advanced CSP capabilities, the user

must know the syntax and semantics of the control constructs
necessary to obtain selections from him, test variables,

perform looping, etc. These constructs are as simple and
intuitive as possible. Tel

Command Sequence Generation 1f

A Command Sequence may be generated in several ways. The
most obvious is to write the text or retrieve and edit an
existing Command Sequence with an editor. HKowever, there
are more convienent methods. 71

A Command Sequence can be generated with the aid of the CSP
itself. Basically, the user executes a CSP command to begin
recording a Command Sequence. From that point on, every bit

of input the user gives is incorporated into the Command Se-
quence. This includes EXEC, split, and unsplit tool com-

mands. This continues until the user terminates the record-

ing with another CSP command. The result is a Command Se-

quence that can be invoked immediately or stored for future

use. 7f2

At "start recording" time the user may specify whether or

not to actually execute the following (recorded) commands;

that is, he may generate a Command Sequence without actually
executing any commands. If unsplit tool commands are given

in this mode, there is no feedback from the tool, since it

is not really executing. For split tool and EXEC commands,

the command feedback is exactly as if the command were exe-

cuted, except for messages that would come from the tool it-

self or from the Works Manager. 7f3

The Command Sequence Generator Tool may also be used to

originate a Command Sequence. This tool aids the user while

he steps through the commands for his sequence. It

simulates the "recording without executing" case above, but

makes it possible to specify user input collection, testing,
branching, and looping points within the sequence. The re-

sult is again a Command Sequence ready for use with the CSP.

This tool also has a "debugging" mode whereby Command

Sequences can be executed in slow motion and modified if
necessary. 7f4

On-Line Programmers Management System:
Final Technical Report
47

BLP HGL 1-May-T79 16:01
Appendix 3: Command Sequence Processor Design Specifications

Command Sequence Control Constructs

This section is intended to give the reader an idea of the
form and capabilities of the Command Sequence control
constructs. It may be incomplete in some respects. The
control escape character is printed as an exclaimation mark
(t). Command words are capitalized and user input is indi-
cated inside angle brackets (< and >). Noise words are in
parentheses.

All of the following commands may be executed when the user
is in any split tool or at the NSW EXEC. They may also ap-
pear in Command Sequences. Note that the "canned" Command
Sequence capability can be used when only the “recording"
and "executing" commands are known. The other control com-
mands are for more advanced capabilities.
Executing Command Sequences

tDo (CS name) <name>

This command causes the Frontend to execute commands
in the Command Sequence named "name".

Recording Command Sequences
tStart Recording (CS name) <name>
<commands to be in Command Sequence "name">
1Stop Recording

The Start and Stop commands are used to create a Com-
mand Sequence named "name".

Getting Selections from the User and Showing Strings
tText (from user into) <varname>
{Character (from user into) <varname>
tword (from user into) <varname>
The above commands cause the Command Sequence Proces-
sor to collect the specified kind of selection from
the user rather than obtaining it from the Command Se-

quence text. After collecting the selection from the
user, the CSP stores the input in the named variable

On-Line Programmers Management System:
Final Technical Keport
48

47238

T8

781

Tg2
783
7g3a

Tg3ai
Tgl
Tzla
Tglb

Tglc

Tgle
785
Tg5a
7g5b
Tg5c

R T S e I o

LTS

AT

BLP HGL 1-May-T79 16:01 47238
Appendix 3: Command Sequence Processor Design Specifications

("varname" here) and directs its attention back to the
Command Sequence text. These commands might be used

to allow the user to specify a file name or other ar-

gument in a command the Command Sequence is perform-

ing. Tg5¢c1

tSelection (from user into) <selvar> Tg5d

This command collects a specific kind of selection
from the user. It is used when the Command Sequence
writer wants to get user input appropriate for a com-
mand in his Sequence. To do so, he specifies that
command, using the "Selection" command at the pcint in
which user input is required. The Selection command
then looks at the grammar for the command he is speci-
fying to determine what kind of selection is needed
from the user. The selection input is stored in
"selvar" and at the same time is provided as input to
the selection instruction. 1In the following example
the user will give a selection for the Insert State-
ment command. The selection will be saved in variable

"place" for possible later use: 4 7g5d1
Insert Statement !Selection (from user into)

<place> <CA> Tgbd1la

1(<noise words>) Tg5e

The "noise words" command () puts the given text in the
command feedback line, allowing the CS writer to prompt
the user with text strings. (Syntax note: 1In this com-
mand the parentheses indicate what the user inserts in
his Command Sequence rather than noise words displayed by
a command.) The following illustrates the use of this
command. 1t shows how to collect a string from the user

and save it: Tgs5f

1(<some text>) 7g85f1

1Text (from user into) <save> Tg5f2

Conditionals, Looping 786
The following commands control the CSP's path over the

Command Sequence. Their arguments are single commands. Tgba

{Begin (command group) <commands> !End 7g6b

On-Line Programmers Management System:
Final Technical RKReport
b9

BLP HGL 1-May-79 16:01 47238
Appendix 3: Command Sequence Processor Design Specifications

The Begin and End commands make several commands
(those grouped between the commands) into a single
command . 786b1

!1f <command> (then) <command> (else) <command> Tgbe

The If command permits the execution of either one

command or another, based on the result of the first
command. Every command has a True or False result

which determines whether the (then/True) or

(else/False) commands are executed. A command always

has the result TRUE unless on of the following

happens: Tgbel

A remote (backend) call returns a failure result. Tgébcla

A global variable is explicitly set by the grammar
during command execution (the variable's name is

not specified at this time). 7g6c¢c1b

The CLI aborts the command for some reason. 7gbeclc

The command is "!FALSE". Tgbec1d

!Loop <command> Tgbd
The Loop command causes the specified "command" to be

executed repeatedly. 7g6d1

'Exit (loop) Tgbe

This command causes the CSP to stop performing the
innermost loop and continue with the command following

the Loop command. 7gbe

{Repeat Loop T7g6f
This causes the CSP to start over at the first command

of the current loop being performed. Tg6f1

Variables &7

iDefine (variable named) <varname> TgTa

!Local (variable named) <locname> 787b

The Define command defines a "global"™ variable; that
is, the variable can be used by any Command Sequence.
A "local" variable, defined by the Local command, is

On-Line Programmers Management System:
Final Technical Report
50

e C e

b
%’:

R S R B A S S A IR e -
B —p—— o w e SN

A e e BTy,

A S AT I s o A e GG SRR e S SR 2 5 (i ki R e i, i e o

BLP HGL 1-May-79 16:01
Appendix 3: Command Sequence Processor Design Specifications

used only in one specific Command Sequence and will be
deleted when that Sequence is completed. A variable
defined by either command may be an integer, string,
or boolean. The type is determined when a value is
assigned to it.

'Assign (variable) <varname> (_) <expression>

The Assign command assigns a value and type to the
variable (either global or local). The expression is
made up of variables, user selections, and operators.
(Although the operators are not specified at this
time, they will include addition, subtraction, and
string concatenation.

1Test (variable) <varname>
tKelation <expression> <relation> <expression>

The Test and Relation commands are intended to be used
as commands within the 1f commands. The Test command
simply sets a condition flag based on the variable.
True/False results will be defined for all variable
types. The helation comand applies the relatiocnal op-
erator to two expressions--the Relation command is
TRUE if and only if the specified relation is TRUE.

iname

This command identifies a global or local name. 1t
may be a variable name or a Command Sequence name.

The Command Sequence will be executed or, if the vari-
able contains a string, treated as a Command Sequence
and executed. If the variable is not a string, a con-
dition flag will be set.

Miscellaneous
% <some text> %

A comment may be inserted in the Command Sequence text
anywhere a space is allowed, by surrounding the com-
ment with percent signs.

I Null

The Null command does nothing and always has the value
TRUE.

On-Line Programmers Management System:
Final Technical Report
51

47238

TgTb1

Tg7c

T8Tc
TgTd

TgTe

Tg7e1

Tg7f

TgTf1
g8

7g8a

7g€an

Te8b

Tg8b1

BLP HGL 1-May-79 16:01 47238]
Appendix 3: Command Sequence Processor Design Specifications i

{False Tg8c
The False command does nothing and always has the
value FALSE. Tg8e1
tEcho (y/n) <Y or N> Tg8d 3

The Echo command determines whether or not the user

sees the normal command feedback text at his terminal

while the Command Sequence is being executed. Echo Y

Wwill result in showing the user the feedback for each
command as it is executed. Echo N will result in

showing the user only the Command Sequence noise words
defined by the noise word command. Tg8d1

A

A

Ry

s e i s A il RN Eidatioc R T RN
o

On-Line Programmers Management System:
Final lechnical Report]
52 S

e e

i

Morugapvamaens &

e e et b A R 5 itk e i P

BLP HGL 1-May-79 16:01 47238
Appendix 4: Proposed External Design for a Process System

Appendix U4: Proposed External Design for a Process System (PS):
AUGMEN1 Journal (47188,), (Revised) Bruce L. Parsley

INTRODUCTION 8a

This document proposes an external design for a Process System (PS). This
includes the user interface -- primarily what relevant AUGMENT commands there
are -- and a new artificial language called the Process Language (PL).

ba1
The basic construct with which we are concerned here is called a "Process
Command Sequence" or "PCS". This is basically a sequence of AUGMENT commands
as described in the text of statements in an AUGMENT file. PCSs are basi-
cally the same as the old Process Commands, but with several additional
features. 8a2

Almost nothing is said in this document about hOW this proposed design might
be implemented, only external specifications are proposed here. Note also
that initially it would not be necessary to implement this design in full:
there are several features that could be added after the initial implementa-
tion. 8a3

Not much effort has been taken to make this document easy to understand be-
cause of its role as a draft language syntax. Further revisions are expected
containing examples and explanations where appropriate. 8al

USER INTEKFACE &b

There are two ways to invoke a Process Command Sequence: with the AUGMENT
Process command and via a "User Command". b1

NB: The meta-language used in this section to describe the syntax of AUG-
MENT commands is something of a mix between CML and the meta-language used
in ARC's user documentatiop, plus some informalities of my own devising.
I hope it's understandable, 8b1a

Process command: 8b2

This command, which is a universal command rather than just a BASE com-

mand, has the following syntax: 8b2a
Process FSTRUCIURE (at) SSEL (CONFIRM / PARAMETERS CONFIRM)
8b2a1
FSTRUCTURE = the "filtered structure" that will replace STRUCTURE
8v2ala
PARAMETERS = see next section 8b2a1b

Note that this is nearly the same as the old Process command with the

added possibility of parameters, which are discussed in the next section.
8b2b

On-Line Programmers Management System:
Final lechnical Report
53

s 20/ L3
e A 2 v i

S

BELP HGL 1-May-79 16:01 47238
Appendix 4: Proposed External Design for a Process System

User Commands: 8b3

There is a facility for users to define and invoke their own User Com-

mands. 8b3a
Defining User Commands: 8b3b
A new command is added to the EASE subsystem with the following syntax:
Define User-command (at) SSEL(Branch) (with level) (OKQEZ§?1CONF1RM ﬂ
a

NB: The "OK" above will act the same as a "1". 8b3blai

The indicated branch is assumed to be a properly formed PCS. 1n addi-
tion it must start with a "label" (see next section for the definition
of a label). The label is examined and used as the associated command
word. 8b3b2

Note that such User Commands are only "defined" for that session.
In subsequent sessions with AUGMENT the User Commands will be un-
known. 8b3b2a

There is also one or more new commands in the USEROPTICONS subsytem that
will provide for the definition of User Commands. User Commands
defined in this manner will be recognized in all subsequent AUGMENT
sessions until the user deletes/excludes the definition, e.g., by using

another command in USERUPTIONS. 8b3b3
This USEROPIIONS feature is analagous to USEROPTIONS' Include (sub- |

system/program) feature. 8b3b3a

Invoking User Commands: 8b3c

After a User Command has been "defined" by any of the BASE or

USEROPTIONS commands, the FrontEnd CLI will act as if "label" were a
universal command at the specified level. Then any time the user in- {
puts the proper character(s) at the base command state of any sub- |
system, the CL1 will act exactly as if the user had input the i

following: 8b3e1 j

Process Branch (at) SSEL(Branch) <0K> 8b3cla ;

PROCESS LANGUAGE 8¢ f
Introduction 8c1

Following is a complete, formal description of the syntax of the proposed
Process Language (PL). 8cla

On-Line Programmers Management System:
Final Technical Report ‘ 3
54 { 4

< e TSR e B

il

i et St - R
S

e A M i e a5 085
s s N .

AR A

R T

i o 5 N TN R

e A L AR 5 s BRI N iy S8 e 7 ' Aol L ki

BLP HGL 1-May-79 16:01 47238
Appendix 4: Proposed External Design for a Process System

The meta-languge in which the description is written is ARC's usual ver-

sion of BNF with the following additions: 8c1b
"§<{foo, bar>" is equivalent to "foo $(bar foo)" and
"$<foo, bar>" is equivalent to "[foo $(bar foo)l", 8c1b1
i.e., a sequence of n foos separated by n-1 bars; 8cibila
"SP" means the character with code U4OB (space); 8c1b2
~"CA" means the character with code 0485 (control-D, Command-Accept);
"CD" means the character with code 30B (control-X, Commandgg;gzte);
"CH" means any character except SP, CA, or '}; gz:gg

"CH -> some character" means any number of characters terminated by,
but not including, the specified character. Thus, the modi! ‘'-::d BNF
description of Label below, "Label = Ch => ':;" says that a label is
any number (greater than or equal to one) of characters terminated by
(but not including) a colon. 8c1b6

Note that PL is a fully typed and type-checked language. PL is inter-
preted rather than compiled. 8cilc

Some information about the semantics is included. Only things that are
novel or that might be obscure are discussed. Readers are assumed to be

familiar with typed, block-structured computer languages. 8c1d
ProcessCommandSequence = #Command; 8cc
Command = NLSCommand / ProcessCommand ; 8c2a

NLSCommand = #CommandWword
$(Selection/Parameter/Confirm/YesNo/NoiseWords/LevAdj/ViewSpecs)

('} Result]; 8c3
CommandWord = CH => SP / *{ [CommandwordLhS '_ / CommandWordExp] '! ;
Selection = CH => CA / '| [SelectionLHS '_ / SelectionExpac?§ 4 5
Parameter = Ch => CA / '} [TextLHS '_ / TextExp Bch 2
Confirm = CA/ CD/ '} [BooleanLHS '_ / booleanExp 8333 YV 3
YesNo =CA/ ('Y/'y) => SP / ('N/'n) => SP / s

'{ [BooleanLHS '_ / BooleanExp] '! ; 8c3e

NoiseWords = '(=> ') / "}(" [TextLHS '_ / TextExp] ")i" ;
8e3f

Un-Line Programmers Management System:
Final Technical Report
55

BLP HGL 1-May-79 16:01 47238
Appendix Y4: Proposed External Design for a Process System

4 LevAdj = $('d/'u) [CA] / '} [TextLHS '_ / TextExp 1 '! ;
8c3g

ViewSpees = CA / CH => CA / '} [TextLHS '_ / TextExp] '} ;
8c3h
Result = ': BooleanLHhS; 8c3i

In the syntax for the NLSCommands, the alternatives before the last are
meant to represent the old Process Commands stuff. Note that it is not
quite accurate or complete, e.g., a user may have changed his/her Command-
Accept character, a CD occuring almost anywhere would screw up the
"parse". 8c3j

The semantics of alternatives of the form
'! [LeftHandSide '_] [Expression] '|

is as follows: 8c3k
' 8c3k1
Characters are taken from the user until the "thing" the CLI is
looking for is complete. 8c3k1a
|LeftHandSide_| Be3k2

Characters are taken from the user until the "thing" the CLI is
looking for is complete and the value of the user response is stored
in the indicated LeftHandSide (a variable in the PL program).
8c3k2a
|Expression| 8c3k3

The Expression is evaluated and fed to the CL1 as if the user had
typed it in. 8c3k3a

Note that NLSCommands may have a Result. If an NLSCommand has a Result
present, the success or failure of the execution of that command is stored
in the indicated BooleanLHS and is thus subsequently available to the PL

program. 8c31

ProcessCommand = '} (Label [ParameterList] / Declaration / Statement) ;
Label = CH => ':; 8::: ‘
ParameterList = '($<.ID ': Typeldentifier, ',> '); 8clb

ProcessCommands that have Labels can be used as c¢bjects of Process Branch
commands. If they are so used and have a ParameterList, the user will be
prompted to provide the values for the parameters. 8clic

Declaration = Label [Persistence]
(TypeDec / VariableDec / ProcedureDec / RoutineDec) ; 8¢5

On-Line Programmers Management System:
Final Technical Report
56

CHRIR I S A B R s e e b ecios it

BLP HGL 1-May-79 16:01 47238
Appendix 4: Proposed External Design for a Process System

Label = CH => ':; 8cb5a

ey

Persistence = "TEMPORARY" / "SEQUENCE" / "“SESSION" ; 8c5b

Note that Declarations may occur anywhere in a2 PL program. Note also that
because PL programs are interpreted, the scope of a Declaration name is
determined by the execution path, not lexically. A Declaration name is
known and may be referenced any time between the time the interpreter has
seen the declaration and the time the variable is destroyed. The
Persistence determines when the variable will be destroyed: 8c5¢

TEMPORARY variables are destroyed when a RETURN statement is executed.

i ; SEQUENCE variables are destroyed when a FINISH statement igcziécuted.
2 % SESSION variables are destroyed when an AUGMENT "session" 2§Z:T
] The default Persistence is TEMPORARY. 32?23
£L TypeDec = "TYPE" '= TypeSpecification ; 8c5d
VariableDec = TypeSpecification [('_/'=) Expression] ; , €cSe
ProcedureDec = ProcedureTS ‘=
$(Declaration / Statement)
"IEND.” ; 8cS5f
koutineDec = RoutineTS ; 8cS5g

NN gt

TypeSpecification =
i ArraylS / BooleanTS / CharacterTS / Commandword1S / EnumerationTS /
¥ IntegerTS / IntervallS / ProcedureTS / RoutineTS / SelectionlS /

iw TextTS ; 8c6
%: OrderedTS = SelectionTS / CountiS ;
; CountTS = CharacterTS / EnumerationTS / IntgriS ;

el £ IntgrTS = IntervalTS / IntegerilS ; 8cba
StringTS = CommandWordTS / SelectionTS / TextTS ; 8cbb
RangeTS = IntervallS / EnumerationTld ; 8cbe
ArrayTs = ArrayTld / ArraylypeConstructor;
BooleanTS = BooleanTld;
CharacterTS = Characterlld;
CommandWordTS = CommandWordTId;

EnumerationTS = EnumerationTld / EnumerationlypeConstructor;
IntegerTs = lntegerTld;
IntervalTS = IntervalTld / IntervalTypeConstructor;

~.On-Line Programmers Management System:
Final Technical Report

57

YT T

B 0 R o N SR s W A K N el WS 77 B i i RS i < A Al S e i R

ELP HGL 1-May-79 16:01 47238
Appendix U4: Proposed External Design for a Process System

ProcedureTS = ProcedureTld / ProcedurelypeConstructor;
RoutineTS = RoutineTld / RoutineTypeConstructor;
Selection1S = SelectionTld;
TextTS = TextTld; 8c6d
ArrayTypeConstructor = "ARRAY" RangelS "OF" TypeSpecification;
8cbe
EnumerationTypeConstructor = '{ #<.1D, ',> '}; 8cbf
IntervalTypeConstructor = ('(/'[) OrderedExp ', OrderedExp (')/']) ;
8cbg
ProcedureTypeConstructor = "PROCEDURE" [ParameterList] [ReturnsClause];
8cbh
ParameterList = '($<.ID ': Typeldentifier, ',> '); 8cbh1

ReturnsClause = "RETURNS" '($<Typeldentifier, ',> '); 8cbhz

RoutineTypeConstructor =
("FEROUTINE"/"BEROUTINE") [ParameterList] [ReturnsClause]; 8c6i

ParameterList = '($<.ID ': Typeldentifier, ',> '); 8c6i1

ReturnsClause = "RETURNS" '($<Typeldentifier, ',> '); 8cbi2

Before a PL program can call an L10 routine in the FrontEnd or Backend,
the name and calling sequence of that routine must be specified. Note
that this is analagous to CML programs. 8cb6i3

Typeldentifier =
ArrayTId / BooleanTld / CharacterTld / CommandWordTld / EnumerationTld /
IntegerTld / IntervalTld / ProcedureTlId / RoutineTld / SelectionTId /

TextTId ; 8e7
OrderedTId = SelectionTld / CountTld ;
CountTld = CharacterTld / EnumerationTld / IntgrTid ;
lntgrild = IntervalTlld / IntegerTIld ; 8cTa
StringTld = CommandWordTId / SelectionTld / TextTId ; 8c7b
RangeTld = EnumerationTld / IntervalTld ; 8cTe
ArrayTld e JIDS
BooleanTId = .1ID / "BOOLEAN" ;
CharacterTid = .ID / "CHARACTER" ;
CommandwordTIld = .ID / "COMMAND-WORD" ;
EnumerationTld = .1D;
IntegerTld = .ID / "INTEGER" ;
Intervallld s 1Dy
ProcedureTld g J1ID;

On-Line Programmers Management System:
Final Technical Report
58

et

gy

TS e

S

BLP HGL 1-May-79 16:01 47238
Appendix 4: Proposed External Design for a Process System

RoutineTld = .1ID;
SelectionTld = .1D / "SELECTION" ;
TextT1d = .ID / "TEXT" ; 8cTd

Selections are meant to hold AUGMENT addresses in text form, i.e., they
should be convertable by 'caddexp', AUGMENI' address evaluation routine,
into L10 TEXT POINTERS. 8cTe {2

Note also that when Selections are taken as pointers to nodes in an AUG-
MENT file tree structure, they are strictly ordered if they point to the
same file. Thus there can be intervals/sequences of Selections that can

be iterated over. 8e7f

Statement = (Label] (
AssignmentStmt / BlockStmt / BumpStmt / CallStmt / CaseStmt / EchoStmt /
ExitStmt / FinishStmt / GotoStmt / 1fStmt / IterativeStmt / NullStmt /

RepeatStmt / ReturnStmt) ; 8c8
Label = CH => ':; 8c8a
AssignmentStmt = #<LeftHandSide, ‘',> '_ #<Expression, ',>; 8c8b 2
blockStmt = "BEGIN" $Statement "|END"; ~ 8e8ec

BumpStmt = "BUMP"
["UP"/"DOWN"] #<CountLHS, ',> /
["NEXT"/"BACK"/"SUCCESSOR"/"PREDECESSOR"] #<SelectionLHS, ',> ;

8c8d
The defaults are UP and SUCCESSOR. 8c8d1
Note that since Selections have order, they may be EUMPed.
8c8d2
CallStmt = "CALL" Call; 8c8e
Call = (RoutineExp / SelectionExp) ['($<Expression, ',> ') 1; :
8c8e1
Any of FEROUTINEs, BEROUTINEs, or PL PROCEDURES may be Called.
8c8e2
CaseStmt = "CASE" Expression "OF"
#StmtChoice
" ENDCASE" ': Statement; 8c8f
StmtChoice = '} #<RelationTail, ',> ': Statement; 8c8f1
RelationTail =
('=/'#) Expression /
('>/'</">="/"<=") OrderedExp /
["NOT"] "IN" RangeTS ; 8c8f2

On-Line Programmers Management System:
Final Technical Report
59

o

R AR ot S

ARSI I AR R T RO NS it T WSS T il

BLP HGL 1-May-79 16:01 147238
Appendix U4: Proposed External Design for a Process System

Note that since Selections have order, they may be compared/related

using any of the comparison/relational operators. 8c8f3
EchoStmt = "ECHO" BooleanExp; 8c8g

The value of the BooleanExp determines whether the user will see things

happen in the Command Feedback Window. 8c8g1
ExitStmt = ("EXITBLOCK" / "EX1TLOOP"™ / "EXITCASE") [IntgrExp];
FinishStmt = "FINISH"; ggg?

There is an implicit FinishStmt after the end of any PCS, whether the
limits of the sequence was determined by the selections in a Process

Group command or any other way. 8c8i1
GotoStmt = "GOTO" SelectionExp; 8c8j
IfStmt =

"IF" BooleanExp "THEN" Statement
["|ELSE" Statement]; 8c8k

IterativeStmt =
[Iteration / Assignation] [ConditionTest] "DO"
Statement
[(ConditionTest]; 8c81

Iteration = ["FOK" OrderedLHS] "IN" RangelS [Increment];
8c811
Increment =
("UP"/"DOWN") [1ntgrExp] /
"USING" ("NEXT"/"BACK"/"SUCCESSOK"/"PREDECESSOR") ; 8c8l1a

The USING can be used only if the OrderedExp in the RangeTS is of

the Selection TYPE. 8cb11b
Assignation = "FOK" LeftHandSide '_. Expression ', Expression;

8c812

ConditionTest = ("WHILE"/"UNTIL") BooleanExp; 8c813

NullStmt = "NULL"; 8c8m

FepeatStmt =
("REPEATBLOCK" / "REPEATLOOP") [IntgrExpl /
"REPEATCASE" [IntgrExp] "WITH" Expression; 8c8n
KeturnStmt = "KETURN" ['($<Expression, ',> ')]; 8c8o

A ReturnStmt executed at that "highest" level acts as a FinishStmt.
8c8o1

On-Line Programmers Management System:
Final Technical Report
60

A A o A I 2 e B AR O S RS SRR il e A

BLP HGL 1-May-79 16:01 47238 1
Appendix U4: Proposed External Design for a Process System ! 3

- ——-

LeftkandSide = LHSList /

ArrayLHS / EooleanLhS / CharacterLHS / CommandwordLHS / EnumerationLhS /
: 3 IntegerLHS / IntervallLhS / ProcedureLHS / koutineLHS / SelectionLLES /
E | TextLHS ; €ey
|

LHSList = '(2#<LeftHandSide, ',> ') ; 8c9a

This form may be used to store multiple return values from a Call.

6cGal
OrderedLhS = SelectionLHS / CountLHS ;
CountLHS = CharacterLhS / EnumerationLES / IntgrLHhS ;
' lntgrLHS = IntervalLHS / IntegerLHS ; 6cSb
StringLHS = CommandwordLES / SelectionLhS / TextLHS ; &cSe
RangeLHS = EnumerationLHS / IntervallHS ; €c9d
ArrayLhHS = .ID / IndexedReference ;
BooleanLHS = .ID / IndexedReference ;
CharacterLhS = .1D / Indexedkeference ;
CommandwWordLhS = .ID / lndexedReference ;
EnumerationLHS = .ID / IndexedReference ;
IntegerLHS = .ID / IndexedReference ;
i IntervalLHS = .1D / IndexedReference ;
3 ProcedureLHS = .ID / Indexedheference ;
. 4 RoutineLHS = .ID / IndexedReference ;
2 SelectionLHS = .ID / Indexedkeference ;
TextLHS = .1D / Indexecheference ; 8cSe
lndexedReference = ArrayLHS '[OrderedExp '] ; 8cof

Expression =
ArrayExp / BooleanExp / CharacterExp / CommandwWordExp / Enumerationkxp /
lntegerExp / IntervalExp / ProcedureExp / koutineExp / Selectionkxp /

Textkxp ; 8c10
OrderedExp = SelectionExp / CountExp ;
g CountExp = CharacterExp / EnumerationExp / IntgrExp ;
IntgrExp = IntervalExp / lntegerExp ; 8c10a
i
5 StringExp = CommandWordExp / SelectionExp / TextExp ; 8c10b :
% :
& RangeExp = EnumerationExp / Intervalkxp ; 8¢c10¢
ArrayExp = AnyTypeExp / '[#<Expression, ',> '] ; 8c10d
g 4 Booleankxp = AnyTypeExp / 6c10e

On-Line Programmers Management System:
Final Technical Fkeport
61

e et o o b b s R i RN ROt

BLP HGL 1-May-79 16:01 47238
Appendix U4: Proposed External Design for a Process System

; EocoleanExp "OR" BooleanExp /
: BooleanExp "AND" EooleanExp /
A "NOT" BooleanExp / 8c10e1l

Expression ('=/'#) Expression /
OrderedExp ('>/'</">="/"<=") OrderedExp /

OrderedExp ["NOT"] "IN" RangelS / Bc10e2 ! 4
"EXIST" '(SelectionExp ') / 8c10e3 } 'i
This expression will test whether or not the specified AUGMENT ad- 1 :
dress actually exists. 8c10e3a i
E "TRUE" / "FALSE" ; 8c10el i
CharacterkExp = AnyTypeExp / ("F1IRST"/"LASI") IntervalTld / .SK1 ;
The OrderedExp associated with the IntervalTld must be of gg;:£CTER
TYPE. 8c10f1
CommandWordExp = AnylypeExp / .SR ; 8c10g

EnumerationkExp = AnyTypeExp / ("FIRST"/"LAST") RangeTld ; 8c10h

The OrderedExp associated with the KangeTld must be of Enumeration
TYPE. 8c10h1

IntegerExp = AnyTypeExp / 8c10i

IntgrExp ('+/'=) IntgrExp /
IntgrExp ('%/'//"MOD") IntgrExp /

'~ IntgrExp 8c10i1 |
"LEVEL" '(SelectionExp ') / 8c10i2 g
The AUGMENT "level" of a statement. 8c10i2a |
(ArrayLHS/StringLHS/.SR/Rangelld) ".L" /
("FIRST"/"LAST") kangeTld / 8c10i3 i
("MIN"/"MAX") '(2#<IntgrExp, ',> ') / |
"ABS" '(IntgrExp ') / €c10i4 1
.NUM ; 8c10i5
IntervalExp = AnyTypeExp / 8c10j

On-Line Programmers Management System:
Final Technical keport
62

it iy i e i i i

ik
L BLP HGL 1-May-79 16:01 47238
"; 4 Appendix 4: Proposed External Design for a Process System
.
4
E | IntervalExp ('+/'=) IntervalExp /
& lntervalExp ('#/'//"MOD") IntervalExp /
_ ; '~ IntervalExp 8c10j1
‘_i "LEVEL" '(SelectionExp ') / 8c10j2
The AUGMENT "level" of a statement. 8c10jea
(ArrayLHS/StringLhS/.SR/RangeTid) ".L" /
("FIRST"/"LAST") RangeTId / 8c10j3
|
= ("MIN®/"MAX") '(2#<IntervalExp, ',> ') /
o "ABS" '(IntervalExp ') / 8c10j4
.NUM ; 8c1035
i! ProcedureExp = AnyTypeExp / '$ ProcedureLkES ; 8c10k
RoutineExp = AnyTypeExp / '$ RoutinelhS ; 8c101
SelectionExp = AnyTypeExp / 8c10m
("BACK"/"DOWN"/"END"/"HEAD"/"NEXT"/"CRIGIN"/
F "PREDECESSOR"/"SUCCESSOR"/"TAIL"/"UP")
1 '(SelectionExp ') / 8c10m1
‘ These Expressions ennable moving around AUGMENT tree-structured
files. 8c10mia
E | .SR ; 8c10m2
‘| TextExp = AnyTypeExp / .SR ; 8c10n
AnyTypeExp = '(Expression ') / .1D /
AssignmentExp / Call / CaseExp / IfExp / IndexedReference / Userkxp ;
8c 100
g AssignmentExp = LeftHandSide ('_/":=") Expression ; 8c1001
P“.
f Call = (RoutineExp / SelectionExp) '($<Expression, ',> ') ; |
3 8¢ 1002
; Any of FEROUTINEs, BERCUTINEs, or PL PROCEDURES may be Called.
5 8c1002a |
¥ CaseExp = "CASE" Expression "OF"
i #ExpChoice
i " |ENDCASE" ': Expression; 8c1003
ExpChoice = '| #<RelationTail, ',> ': Expression; 8c1003a

RelationTail =]

e e e

On-Line Programmers Management System: i
Final Technical Heport
63

et

e i i AR K S AT R SR N P B L S = i A S e - —e

BLP HGL 1-May-T79 16:01 47238
Appendix U4: Proposed External Design for a Process System

('=/'#) Expression /
('>/'</">="/"<=") OrderedExp /

e . e e R A

["NOT"] "IN" RangeTS ; 8c1003b
IfExp = "IF" BooleanExp "THEN" Expression "ELSE"™ Expression;

8c 1004

IndexedReference = ArrayLHS '[OrderedExp '] ; 8c¢1005

UserExp = '| (LeftHandSide '_ / Typeldentifier) '}; 8¢ 1006

The user will be interactively prompted to provide a value. The
user-provided value will be evaluated acccrding to the T1YPE indi-

i S —— —

cated by the LeftHandSide or Typeldentifier. 8c1006:1
The user will be inputting a LSEL. Thus he or she may BUG rather
than type. 8¢ 1006b
CNwM = Comment / NoiseWords / Message ; 8c11
Comment = '$% -> '%; 8c11a :
NoiseWords = '(=> '); 8c11b :
Message = '; => ';; 8clie

A ChwM may appear any place a space may appear. Comments are ignored.
The value of a NoiseWord will appear in the Command Feedback Window
enclosed in parentheses. The value of a ilessage will appear in the TTY
Window enclosed in semi-colons. 8cild

Both NoiseWords and Messages may be variable. They both may contain: '
Expression '|. 1If so, the Expression is evaluated, converted to text if
necessary, and shown in the appropriate window. 8cilile

b s i o e o b e it b L U Sia i o dut e apiidce o L b s dbaa b S0 e

4
2
-

On-Line Programmers Management System:
Final Technical FReport
6u

; BLP HGL 1-May-79 16:01 47238
¢ Glossary

Glossary 9

ya

CML: The Command Meta Language. 7The user interface of all NLS subsystems is 3
specified in CML. Ga

DAD: Do-All Debugger 9b

o —a—— s

encapsulation: There is a facility for encapsulating programs for NLE. This
! facility allows programs (.sav or .exe files) that were written without MLS
i in mind to be executed as sub-forks of NLS. Encapsulated programs may get
i; their input from NLS files or, to a degree, interactively from the user.
E | Similarly for the output from encapsulated programs. Currently the Meta,
e | L10, and CML compilers are encapsulated. Sc

4 fork: TENEX's term for what is most often called a "process" in computer
terminology 9d

Sl

INCLUDE statement: We have facility for "including" a group of statements)
from any NLS file as if that group of statements were actually present in
place of the INCLUDE statement. ge

index, a LIBRARY: An index file is produced by the L1BRARY subsystem from a
source code file. 1t contains a sorted list of all the global variable and
procedure names in that module with pcinters to their locations in the source
code file. See "SysGuide". Sf

4 JDAD: JOVI1AL DAD =

L10: An ALGOL-like language with additional string manipulation facilities. .
L10 is the primary implementation language of NLS. Sh i

LLIERARY subsystem: An NLS subsystem that will conditionally perform various

clerical and bookkeeping chores on a collection of modules, e.g., compiling,

loading, printing, indexing, contructing SysGuides. The reference manual may
be found in <29151,>. gi

Meta: A "meta-compiler" system used to produce compilers. L10, CML, and of
course Meta are written in Meta. 93

PROGRAMS subsystem: An NLS subsystem having commands of use to programmers,
e.g., Compile, insert Procedure. Users' documentation may be found in
<ArcDocumentation,Programs,>. 9k 3

subsystem, an NLS: NLS may be viewed as a collection of subsystems. Each
subsystem has a collection of commands that are functionally related, e€.g.,
the bASE subsytem has editing commands (and some others). 28

BN iR SRS, . A

On=Line Programmers Management System:
Final Technical Report
65

B

S

s AR A e

i .

et R AR RS = GRS

BLP HGL 1-May-79 16:01 47238
Glossary

SysGuide: A sorted collection of indices (see "index" above). Typically a
SysGuide will contain the indices from all the modules in the entire scope of

an address space (in a fork or .sav file). A SysGuide may be used in the NLS
Jump (to) Name External command. Sm

template: See <SsSrc,Programs-Templates,>. A group of NLS statements used
by the PROGRAMS subsystem Insert command, e.g., 9n

UNTIL until-clause DO 9n1

BEGIN 9nla

END; 9n1b

templates file: An NLS file containing templates, see
<SsSrc,Programs-Templates,>. 90

Un-Line Programmers Management System:
Final Technical Report
66

B Lo 23 23 23 23 rd-pd rd 23 L3 22 23 L3 L)

MISSION
of
Rome Air Development Center

RADC plans and executes n.umch development, test and
selected acquisition programs W of§ Command, Control
Communications and Intuugence (C°1) activities. Technical
and engineering support within aneas of technical competence
44 provided to ESD Program Offices (POs) and other ESD
elements. The principal mission arneas arne
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, muugmc data
collection and handling, infonmation system technology,
4onospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

3
3

